Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning

脑电图 学习迁移 计算机科学 人工智能 二元分类 模式识别(心理学) 唤醒 情绪识别 任务(项目管理) 怪胎范式 情绪分类 语音识别 机器学习 心理学 支持向量机 事件相关电位 管理 精神科 神经科学 经济
作者
Jinyu Li,Haoqiang Hua,Zhihui Xu,Lin Shu,Xiangmin Xu,Feng Kuang,Shibin Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105519-105519 被引量:42
标识
DOI:10.1016/j.compbiomed.2022.105519
摘要

In recent years, with the rapid development of machine learning, automatic emotion recognition based on electroencephalogram (EEG) signals has received increasing attention. However, owing to the great variance of EEG signals sampled from different subjects, EEG-based emotion recognition experiences the individual difference problem across subjects, which significantly hinders recognition performance. In this study, we presented a method for EEG-based emotion recognition using a combination of a multi-scale residual network (MSRN) and meta-transfer learning (MTL) strategy. The MSRN was used to represent connectivity features of EEG signals in a multi-scale manner, which utilized different receptive fields of convolution neural networks to capture the interactions of different brain regions. The MTL strategy fully used the merits of meta-learning and transfer learning to significantly reduce the gap in individual differences between various subjects. The proposed method can not only further explore the relationship between connectivity features and emotional states but also alleviate the problem of individual differences across subjects. The average cross-subject accuracies of the proposed method were 71.29% and 71.92% for the valence and arousal tasks on the DEAP dataset, respectively. It achieved an accuracy of 87.05% for the binary classification task on the SEED dataset. The results show that the framework has a positive effect on the cross-subject EEG emotion recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助乐观寻雪采纳,获得10
2秒前
zqq完成签到,获得积分10
5秒前
6秒前
打打应助空气采纳,获得10
7秒前
11秒前
13秒前
Guoqiang发布了新的文献求助100
15秒前
dreamer发布了新的文献求助10
17秒前
清秀问芙完成签到 ,获得积分20
17秒前
袁可宁完成签到,获得积分10
19秒前
21秒前
24秒前
陈可霖发布了新的文献求助10
25秒前
25秒前
慕青应助Guoqiang采纳,获得10
27秒前
28秒前
28秒前
29秒前
30秒前
30秒前
传奇3应助yrheong采纳,获得10
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
bkagyin应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
打打应助科研通管家采纳,获得30
31秒前
科研通AI2S应助科研通管家采纳,获得10
31秒前
共享精神应助科研通管家采纳,获得10
31秒前
oceanao应助科研通管家采纳,获得10
31秒前
李爱国应助科研通管家采纳,获得10
31秒前
31秒前
31秒前
深情安青应助科研通管家采纳,获得30
32秒前
香蕉觅云应助科研通管家采纳,获得10
32秒前
joana完成签到,获得积分10
33秒前
淡淡完成签到 ,获得积分10
34秒前
坚强难摧发布了新的文献求助10
34秒前
悦悦发布了新的文献求助10
36秒前
2021发布了新的文献求助10
36秒前
GC发布了新的文献求助30
36秒前
felix发布了新的文献求助10
36秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228