Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning

脑电图 学习迁移 计算机科学 人工智能 二元分类 模式识别(心理学) 唤醒 情绪识别 任务(项目管理) 怪胎范式 情绪分类 语音识别 机器学习 心理学 支持向量机 事件相关电位 管理 精神科 神经科学 经济
作者
Jinyu Li,Haoqiang Hua,Zhihui Xu,Lin Shu,Xiangmin Xu,Feng Kuang,Shibin Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105519-105519 被引量:42
标识
DOI:10.1016/j.compbiomed.2022.105519
摘要

In recent years, with the rapid development of machine learning, automatic emotion recognition based on electroencephalogram (EEG) signals has received increasing attention. However, owing to the great variance of EEG signals sampled from different subjects, EEG-based emotion recognition experiences the individual difference problem across subjects, which significantly hinders recognition performance. In this study, we presented a method for EEG-based emotion recognition using a combination of a multi-scale residual network (MSRN) and meta-transfer learning (MTL) strategy. The MSRN was used to represent connectivity features of EEG signals in a multi-scale manner, which utilized different receptive fields of convolution neural networks to capture the interactions of different brain regions. The MTL strategy fully used the merits of meta-learning and transfer learning to significantly reduce the gap in individual differences between various subjects. The proposed method can not only further explore the relationship between connectivity features and emotional states but also alleviate the problem of individual differences across subjects. The average cross-subject accuracies of the proposed method were 71.29% and 71.92% for the valence and arousal tasks on the DEAP dataset, respectively. It achieved an accuracy of 87.05% for the binary classification task on the SEED dataset. The results show that the framework has a positive effect on the cross-subject EEG emotion recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
anne完成签到 ,获得积分10
刚刚
Mazhuang应助丹丹丹采纳,获得30
刚刚
害羞大碗发布了新的文献求助10
刚刚
小猛哥发布了新的文献求助10
刚刚
1秒前
海带发布了新的文献求助10
2秒前
dengdeng发布了新的文献求助10
3秒前
3秒前
大林发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
cvvvvv发布了新的文献求助10
7秒前
engel58驳回了Owen应助
8秒前
yuanyuanquanquan完成签到,获得积分10
8秒前
9秒前
effort发布了新的文献求助10
10秒前
ht发布了新的文献求助10
11秒前
优秀的鹤轩完成签到,获得积分10
12秒前
14秒前
15秒前
15秒前
wanci应助传统的雨文采纳,获得10
16秒前
liuy03发布了新的文献求助10
16秒前
桐桐应助Album采纳,获得10
16秒前
中陆完成签到,获得积分10
18秒前
蓝桉发布了新的文献求助10
19秒前
19秒前
薯愿完成签到,获得积分10
19秒前
亦安完成签到,获得积分10
20秒前
23秒前
晴空万里完成签到,获得积分10
23秒前
23秒前
量子星尘发布了新的文献求助10
27秒前
Docgyj完成签到 ,获得积分0
27秒前
niu发布了新的文献求助10
28秒前
失重心跳完成签到,获得积分10
28秒前
FashionBoy应助sweet凤梨采纳,获得10
28秒前
叶问完成签到,获得积分10
28秒前
研究生发布了新的文献求助10
30秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010600
求助须知:如何正确求助?哪些是违规求助? 3550359
关于积分的说明 11305499
捐赠科研通 3284744
什么是DOI,文献DOI怎么找? 1810836
邀请新用户注册赠送积分活动 886556
科研通“疑难数据库(出版商)”最低求助积分说明 811499