Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning

脑电图 学习迁移 计算机科学 人工智能 二元分类 模式识别(心理学) 唤醒 情绪识别 任务(项目管理) 怪胎范式 情绪分类 语音识别 机器学习 心理学 支持向量机 事件相关电位 精神科 经济 神经科学 管理
作者
Jinyu Li,Haoqiang Hua,Zhihui Xu,Lin Shu,Xiangmin Xu,Feng Kuang,Shibin Wu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:145: 105519-105519 被引量:64
标识
DOI:10.1016/j.compbiomed.2022.105519
摘要

In recent years, with the rapid development of machine learning, automatic emotion recognition based on electroencephalogram (EEG) signals has received increasing attention. However, owing to the great variance of EEG signals sampled from different subjects, EEG-based emotion recognition experiences the individual difference problem across subjects, which significantly hinders recognition performance. In this study, we presented a method for EEG-based emotion recognition using a combination of a multi-scale residual network (MSRN) and meta-transfer learning (MTL) strategy. The MSRN was used to represent connectivity features of EEG signals in a multi-scale manner, which utilized different receptive fields of convolution neural networks to capture the interactions of different brain regions. The MTL strategy fully used the merits of meta-learning and transfer learning to significantly reduce the gap in individual differences between various subjects. The proposed method can not only further explore the relationship between connectivity features and emotional states but also alleviate the problem of individual differences across subjects. The average cross-subject accuracies of the proposed method were 71.29% and 71.92% for the valence and arousal tasks on the DEAP dataset, respectively. It achieved an accuracy of 87.05% for the binary classification task on the SEED dataset. The results show that the framework has a positive effect on the cross-subject EEG emotion recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
3秒前
SciKid524完成签到 ,获得积分10
4秒前
4秒前
Berne发布了新的文献求助10
4秒前
5秒前
斯文败类应助xh采纳,获得10
5秒前
ljw完成签到 ,获得积分10
5秒前
SciGPT应助1212采纳,获得10
5秒前
清脆南霜完成签到,获得积分10
6秒前
6秒前
bunny发布了新的文献求助10
6秒前
Owen应助伶俐鹤轩采纳,获得20
7秒前
小二郎应助王蕊采纳,获得10
7秒前
7秒前
杨小鸿发布了新的文献求助10
8秒前
dddd发布了新的文献求助10
10秒前
Nara2021发布了新的文献求助10
12秒前
13秒前
183完成签到,获得积分10
14秒前
石头爱科研完成签到,获得积分10
14秒前
15秒前
科研通AI6.1应助bunny采纳,获得10
15秒前
若水完成签到,获得积分0
15秒前
16秒前
cherish完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助30
17秒前
鲨鱼游泳教练完成签到,获得积分10
19秒前
21秒前
22秒前
lsrlsr发布了新的文献求助10
22秒前
华仔应助傻傻的雅寒采纳,获得10
23秒前
王蕊发布了新的文献求助10
23秒前
伶俐鹤轩完成签到,获得积分10
24秒前
SciGPT应助杨小鸿采纳,获得10
25秒前
BIGDUCK发布了新的文献求助10
25秒前
王者归来完成签到,获得积分10
26秒前
伶俐鹤轩发布了新的文献求助20
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5742197
求助须知:如何正确求助?哪些是违规求助? 5407018
关于积分的说明 15344388
捐赠科研通 4883635
什么是DOI,文献DOI怎么找? 2625185
邀请新用户注册赠送积分活动 1574043
关于科研通互助平台的介绍 1530978