清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Cross-subject EEG emotion recognition combined with connectivity features and meta-transfer learning

脑电图 学习迁移 计算机科学 人工智能 二元分类 模式识别(心理学) 唤醒 情绪识别 任务(项目管理) 怪胎范式 情绪分类 语音识别 机器学习 心理学 支持向量机 事件相关电位 管理 精神科 神经科学 经济
作者
Jinyu Li,Haoqiang Hua,Zhihui Xu,Lin Shu,Xiangmin Xu,Feng Kuang,Shibin Wu
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:145: 105519-105519 被引量:64
标识
DOI:10.1016/j.compbiomed.2022.105519
摘要

In recent years, with the rapid development of machine learning, automatic emotion recognition based on electroencephalogram (EEG) signals has received increasing attention. However, owing to the great variance of EEG signals sampled from different subjects, EEG-based emotion recognition experiences the individual difference problem across subjects, which significantly hinders recognition performance. In this study, we presented a method for EEG-based emotion recognition using a combination of a multi-scale residual network (MSRN) and meta-transfer learning (MTL) strategy. The MSRN was used to represent connectivity features of EEG signals in a multi-scale manner, which utilized different receptive fields of convolution neural networks to capture the interactions of different brain regions. The MTL strategy fully used the merits of meta-learning and transfer learning to significantly reduce the gap in individual differences between various subjects. The proposed method can not only further explore the relationship between connectivity features and emotional states but also alleviate the problem of individual differences across subjects. The average cross-subject accuracies of the proposed method were 71.29% and 71.92% for the valence and arousal tasks on the DEAP dataset, respectively. It achieved an accuracy of 87.05% for the binary classification task on the SEED dataset. The results show that the framework has a positive effect on the cross-subject EEG emotion recognition task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yangxi发布了新的文献求助10
6秒前
研友_VZG7GZ应助yangxi采纳,获得10
11秒前
yangxi完成签到,获得积分10
18秒前
21秒前
43秒前
1分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
BinBlues完成签到,获得积分10
1分钟前
1分钟前
1分钟前
vicky完成签到 ,获得积分10
2分钟前
冷傲半邪完成签到,获得积分10
2分钟前
2分钟前
nuliguan完成签到 ,获得积分10
2分钟前
2分钟前
激动的似狮完成签到,获得积分10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
zpc猪猪完成签到,获得积分10
3分钟前
3分钟前
fabius0351完成签到 ,获得积分10
3分钟前
如歌完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
5分钟前
003发布了新的社区帖子
5分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
7分钟前
Archer发布了新的文献求助10
7分钟前
彭于晏应助003采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596369
求助须知:如何正确求助?哪些是违规求助? 4008305
关于积分的说明 12409093
捐赠科研通 3687302
什么是DOI,文献DOI怎么找? 2032309
邀请新用户注册赠送积分活动 1065560
科研通“疑难数据库(出版商)”最低求助积分说明 950863