FedGCN: Federated Learning-Based Graph Convolutional Networks for Non-Euclidean Spatial Data

计算机科学 联营 图形 卷积神经网络 数据挖掘 人工智能 概括性 模式识别(心理学) 理论计算机科学 算法 机器学习 心理学 心理治疗师
作者
Kai Hu,WU Jia-sheng,Yaogen Li,Meixia Lu,Liguo Weng,Min Xia
出处
期刊:Mathematics [Multidisciplinary Digital Publishing Institute]
卷期号:10 (6): 1000-1000 被引量:30
标识
DOI:10.3390/math10061000
摘要

Federated Learning (FL) can combine multiple clients for training and keep client data local, which is a good way to protect data privacy. There are many excellent FL algorithms. However, most of these can only process data with regular structures, such as images and videos. They cannot process non-Euclidean spatial data, that is, irregular data. To address this problem, we propose a Federated Learning-Based Graph Convolutional Network (FedGCN). First, we propose a Graph Convolutional Network (GCN) as a local model of FL. Based on the classical graph convolutional neural network, TopK pooling layers and full connection layers are added to this model to improve the feature extraction ability. Furthermore, to prevent pooling layers from losing information, cross-layer fusion is used in the GCN, giving FL an excellent ability to process non-Euclidean spatial data. Second, in this paper, a federated aggregation algorithm based on an online adjustable attention mechanism is proposed. The trainable parameter ρ is introduced into the attention mechanism. The aggregation method assigns the corresponding attention coefficient to each local model, which reduces the damage caused by the inefficient local model parameters to the global model and improves the fault tolerance and accuracy of the FL algorithm. Finally, we conduct experiments on six non-Euclidean spatial datasets to verify that the proposed algorithm not only has good accuracy but also has a certain degree of generality. The proposed algorithm can also perform well in different graph neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搞学术的完成签到,获得积分10
刚刚
九柒完成签到,获得积分10
刚刚
Hello应助guyuefanxing采纳,获得10
1秒前
1秒前
Lucas应助澄碧星林采纳,获得30
2秒前
承诺信守完成签到,获得积分10
3秒前
4秒前
祝莞完成签到,获得积分10
4秒前
tianugui发布了新的文献求助10
5秒前
务实黄豆发布了新的文献求助10
5秒前
科研女仆完成签到 ,获得积分10
8秒前
美好中道发布了新的文献求助10
10秒前
Owen应助肉肉的肉采纳,获得10
11秒前
11秒前
值雨完成签到,获得积分10
12秒前
我是老大应助CQ采纳,获得10
12秒前
李星雨关注了科研通微信公众号
13秒前
tianugui完成签到,获得积分10
13秒前
科目三应助务实黄豆采纳,获得10
13秒前
善学以致用应助光轮2000采纳,获得10
14秒前
16秒前
277发布了新的文献求助10
16秒前
16秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
20秒前
莫倦完成签到 ,获得积分20
20秒前
hardname发布了新的文献求助10
20秒前
慕青应助hbzyydx46采纳,获得10
21秒前
邓秀君完成签到,获得积分10
22秒前
23秒前
wenjing发布了新的文献求助10
23秒前
FashionBoy应助淡定的奇异果采纳,获得10
23秒前
23秒前
张小星发布了新的文献求助10
26秒前
26秒前
司空踏歌发布了新的文献求助30
26秒前
27秒前
yucj完成签到,获得积分10
27秒前
laodsy完成签到,获得积分10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951145
求助须知:如何正确求助?哪些是违规求助? 3496497
关于积分的说明 11082681
捐赠科研通 3226970
什么是DOI,文献DOI怎么找? 1784113
邀请新用户注册赠送积分活动 868202
科研通“疑难数据库(出版商)”最低求助积分说明 801089