FedGCN: Federated Learning-Based Graph Convolutional Networks for Non-Euclidean Spatial Data

计算机科学 联营 图形 卷积神经网络 数据挖掘 人工智能 概括性 模式识别(心理学) 理论计算机科学 算法 机器学习 心理学 心理治疗师
作者
Kai Hu,WU Jia-sheng,Yaogen Li,Meixia Lu,Liguo Weng,Min Xia
出处
期刊:Mathematics [MDPI AG]
卷期号:10 (6): 1000-1000 被引量:30
标识
DOI:10.3390/math10061000
摘要

Federated Learning (FL) can combine multiple clients for training and keep client data local, which is a good way to protect data privacy. There are many excellent FL algorithms. However, most of these can only process data with regular structures, such as images and videos. They cannot process non-Euclidean spatial data, that is, irregular data. To address this problem, we propose a Federated Learning-Based Graph Convolutional Network (FedGCN). First, we propose a Graph Convolutional Network (GCN) as a local model of FL. Based on the classical graph convolutional neural network, TopK pooling layers and full connection layers are added to this model to improve the feature extraction ability. Furthermore, to prevent pooling layers from losing information, cross-layer fusion is used in the GCN, giving FL an excellent ability to process non-Euclidean spatial data. Second, in this paper, a federated aggregation algorithm based on an online adjustable attention mechanism is proposed. The trainable parameter ρ is introduced into the attention mechanism. The aggregation method assigns the corresponding attention coefficient to each local model, which reduces the damage caused by the inefficient local model parameters to the global model and improves the fault tolerance and accuracy of the FL algorithm. Finally, we conduct experiments on six non-Euclidean spatial datasets to verify that the proposed algorithm not only has good accuracy but also has a certain degree of generality. The proposed algorithm can also perform well in different graph neural networks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助泪水打湿鲜肉包采纳,获得10
刚刚
2秒前
寒冷幼丝发布了新的文献求助10
2秒前
3秒前
saber349完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
她她她她她她完成签到,获得积分10
4秒前
高兴的平露完成签到 ,获得积分10
4秒前
4秒前
SciGPT应助番茄绑了鸡蛋采纳,获得10
5秒前
英俊的铭应助机灵的亦绿采纳,获得10
5秒前
6秒前
Libgenxxxx完成签到,获得积分10
6秒前
虚心的铅笔完成签到 ,获得积分10
6秒前
saber349发布了新的文献求助10
8秒前
彭于晏应助zoushiyi采纳,获得10
9秒前
无极微光应助闪闪的熠彤采纳,获得20
10秒前
科目三应助寒冷幼丝采纳,获得10
10秒前
lyy关闭了lyy文献求助
11秒前
科研通AI6应助机智小馒头采纳,获得10
12秒前
量子星尘发布了新的文献求助10
12秒前
13秒前
魔法的水管完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
16秒前
HUYAOWEI发布了新的文献求助10
17秒前
进击的PhD应助解放之鼓采纳,获得20
17秒前
18秒前
hhc完成签到,获得积分10
18秒前
19秒前
追寻的玉兰应助XBC采纳,获得10
20秒前
1234完成签到,获得积分10
20秒前
安静皮带发布了新的文献求助10
22秒前
乐乐应助tl采纳,获得10
23秒前
23秒前
Hill发布了新的文献求助10
23秒前
郑泽航完成签到,获得积分10
23秒前
23秒前
Hello应助MaoTing采纳,获得10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5655855
求助须知:如何正确求助?哪些是违规求助? 4800784
关于积分的说明 15074114
捐赠科研通 4814288
什么是DOI,文献DOI怎么找? 2575593
邀请新用户注册赠送积分活动 1530977
关于科研通互助平台的介绍 1489613