Recurrent Neural Networks for Snapshot Compressive Imaging.

快照(计算机存储) 计算机科学 人工智能 压缩传感 计算机视觉 卷积神经网络 残余物 深度学习 迭代重建 帧速率 循环神经网络
作者
Ziheng Cheng,Bo Chen,Ruiying Lu,Zhengjue Wang,Hao Zhang,Ziyi Meng,Xin Yuan
出处
期刊:IEEE Transactions on Software Engineering [IEEE Computer Society]
卷期号:PP
标识
DOI:10.1109/tpami.2022.3161934
摘要

Conventional high-speed and spectral imaging systems are expensive and they usually consume a significant amount of memory and bandwidth to save and transmit the high-dimensional data. By contrast, snapshot compressive imaging (SCI), where multiple sequential frames are coded by different masks and then summed to a single measurement, is a promising idea to use a 2-dimensional camera to capture 3-dimensional scenes. In this paper, we consider the reconstruction problem in SCI, i.e., recovering a series of scenes from a compressed measurement. Specifically, the measurement and modulation masks are fed into our proposed network, dubbed BIdirectional Recurrent Neural networks with Adversarial Training (BIRNAT) to reconstruct the desired frames. BIRNAT employs a deep convolutional neural network with residual blocks and self-attention to reconstruct the first frame, based on which a bidirectional recurrent neural network is utilized to sequentially reconstruct the following frames. Moreover, we build an extended BIRNAT-color algorithm for color videos aiming at joint reconstruction and demosaicing. Extensive results on both video and spectral, simulation and real data from three SCI cameras demonstrate the superior performance of BIRNAT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Longlong应助科研通管家采纳,获得20
刚刚
刚刚
刚刚
FashionBoy应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
yydragen应助科研通管家采纳,获得50
刚刚
刚刚
刚刚
刚刚
万能图书馆应助wewewew采纳,获得10
1秒前
1秒前
改论文不看剧应助rubbertail采纳,获得20
1秒前
kakainho完成签到,获得积分10
1秒前
2秒前
NexusExplorer应助you采纳,获得10
2秒前
追寻航空发布了新的文献求助100
2秒前
大模型应助麦克阿宇采纳,获得10
2秒前
2秒前
我是老大应助MHX采纳,获得10
2秒前
烟花应助含蓄绿兰采纳,获得10
3秒前
3秒前
勤奋大地完成签到,获得积分10
3秒前
Amy完成签到,获得积分10
4秒前
夏侯德东完成签到,获得积分10
4秒前
sinlar发布了新的文献求助30
4秒前
无限的书芹关注了科研通微信公众号
4秒前
MaxChen发布了新的文献求助10
4秒前
kylin完成签到,获得积分10
5秒前
5秒前
Chenyan775199发布了新的文献求助10
5秒前
思源应助hwy采纳,获得10
6秒前
圆圆的脑袋完成签到,获得积分10
6秒前
所所应助BK_采纳,获得10
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3970802
求助须知:如何正确求助?哪些是违规求助? 3515474
关于积分的说明 11178714
捐赠科研通 3250627
什么是DOI,文献DOI怎么找? 1795390
邀请新用户注册赠送积分活动 875818
科研通“疑难数据库(出版商)”最低求助积分说明 805183