Recurrent Neural Networks for Snapshot Compressive Imaging.

快照(计算机存储) 计算机科学 人工智能 压缩传感 计算机视觉 卷积神经网络 残余物 深度学习 迭代重建 帧速率 循环神经网络
作者
Ziheng Cheng,Bo Chen,Ruiying Lu,Zhengjue Wang,Hao Zhang,Ziyi Meng,Xin Yuan
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:PP
标识
DOI:10.1109/tpami.2022.3161934
摘要

Conventional high-speed and spectral imaging systems are expensive and they usually consume a significant amount of memory and bandwidth to save and transmit the high-dimensional data. By contrast, snapshot compressive imaging (SCI), where multiple sequential frames are coded by different masks and then summed to a single measurement, is a promising idea to use a 2-dimensional camera to capture 3-dimensional scenes. In this paper, we consider the reconstruction problem in SCI, i.e., recovering a series of scenes from a compressed measurement. Specifically, the measurement and modulation masks are fed into our proposed network, dubbed BIdirectional Recurrent Neural networks with Adversarial Training (BIRNAT) to reconstruct the desired frames. BIRNAT employs a deep convolutional neural network with residual blocks and self-attention to reconstruct the first frame, based on which a bidirectional recurrent neural network is utilized to sequentially reconstruct the following frames. Moreover, we build an extended BIRNAT-color algorithm for color videos aiming at joint reconstruction and demosaicing. Extensive results on both video and spectral, simulation and real data from three SCI cameras demonstrate the superior performance of BIRNAT.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
shuyou完成签到,获得积分10
1秒前
领导范儿应助winstar采纳,获得10
1秒前
隐形曼青应助ytzhang0587采纳,获得10
1秒前
1秒前
yukeshou完成签到,获得积分10
3秒前
zly完成签到,获得积分10
3秒前
4秒前
打打应助123456采纳,获得10
5秒前
daicy发布了新的文献求助10
8秒前
呼初南完成签到 ,获得积分20
8秒前
9秒前
10秒前
10秒前
11秒前
丁鹏笑完成签到 ,获得积分0
11秒前
量子星尘发布了新的文献求助10
11秒前
热心采白完成签到 ,获得积分10
12秒前
12秒前
13秒前
13秒前
13秒前
刘丰铭发布了新的文献求助10
14秒前
韩笑发布了新的文献求助10
15秒前
123456发布了新的文献求助10
16秒前
Seek发布了新的文献求助50
17秒前
Liurthis关注了科研通微信公众号
17秒前
热心采白关注了科研通微信公众号
17秒前
Log发布了新的文献求助10
17秒前
luis应助科研通管家采纳,获得10
18秒前
wy.he应助科研通管家采纳,获得10
18秒前
一一应助科研通管家采纳,获得20
18秒前
上官若男应助科研通管家采纳,获得10
18秒前
18秒前
tuanheqi应助科研通管家采纳,获得150
18秒前
18秒前
18秒前
wanci应助科研通管家采纳,获得10
18秒前
老福贵儿应助科研通管家采纳,获得10
18秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
The polyurethanes book 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5610157
求助须知:如何正确求助?哪些是违规求助? 4694672
关于积分的说明 14883860
捐赠科研通 4721346
什么是DOI,文献DOI怎么找? 2545014
邀请新用户注册赠送积分活动 1509927
关于科研通互助平台的介绍 1473039