稳健性(进化)
非线性系统
控制理论(社会学)
跟踪误差
李雅普诺夫函数
计算机科学
数学
控制(管理)
趋同(经济学)
鲁棒控制
自适应控制
生物化学
物理
量子力学
人工智能
经济
基因
经济增长
化学
作者
Roberto Franco,Héctor Ríos,Alejandra Ferreira de Loza
摘要
Summary This article contributes with a finite‐time model reference adaptive control approach to solve the robust tracking problem for a class of disturbed scalar linear systems. A nonlinear continuous control law, composed of nonlinear adaptive gains, provides a finite‐time rate of convergence. For the ideal case, that is, without external disturbances, the tracking and the parameter (ideal control gains) identification error converge to zero in a finite time. For the disturbed case, the tracking and the parameter identification error dynamics are finite‐time input‐to‐state stable with respect to the external disturbance. The corresponding convergence proofs and the robustness analysis are based on a Lyapunov function approach, input‐to‐state stability theory, and homogeneity theory. Finally, simulation and experimental results show the feasibility of the proposed scheme.
科研通智能强力驱动
Strongly Powered by AbleSci AI