LAD-Net: A Novel Light Weight Model for Early Apple Leaf Pests and Diseases Classification

白粉病 叶斑病 卷积(计算机科学) 计算机科学 园艺 人工智能 模式识别(心理学) 生物 数学 人工神经网络
作者
Xianyu Zhu,Jinjiang Li,Runchang Jia,Bin Liu,Zhuohan Yao,Aihong Yuan,Yingqiu Huo,Haixi Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1156-1169 被引量:20
标识
DOI:10.1109/tcbb.2022.3191854
摘要

Aphids, brown spots, mosaics, rusts, powdery mildew and Alternaria blotches are common types of early apple leaf pests and diseases that severely affect the yield and quality of apples. Recently, deep learning has been regarded as the best classification model for apple leaf pests and diseases. However, these models with large parameters have difficulty providing an accurate and fast diagnosis of apple leaf pests and diseases on mobile terminals. This paper proposes a novel and real-time early apple leaf disease recognition model. AD Convolution is firstly utilized to replace standard convolution to make smaller number of parameters and calculations. Meanwhile, a LAD-Inception is built to enhance the ability of extracting multiscale features of different sizes of disease spots. Finally, the LAD-Net model is built by the LR-CBAM and the LAD-Inception modules, replacing a full connection with global average pooling to further reduce parameters. The results show that the LAD-Net, with a size of only 1.25MB, can achieve a recognition performance of 98.58%. Additionally, it is only delayed by 15.2ms on HUAWEI P40 and by 100.1ms on Jetson Nano, illustrating that the LAD-Net can accurately recognize early apple leaf pests and diseases on mobile devices in real-time, providing portable technical support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余生请指教完成签到,获得积分10
刚刚
FashionBoy应助可耐的善斓采纳,获得10
1秒前
2秒前
2秒前
2秒前
2秒前
小马甲应助309175700@qq.com采纳,获得100
2秒前
4秒前
4秒前
Zhang发布了新的文献求助10
4秒前
5秒前
5秒前
6秒前
VuuVuu发布了新的文献求助10
6秒前
6秒前
今后应助memo999采纳,获得10
6秒前
6秒前
7秒前
jianwuzhou完成签到,获得积分10
7秒前
美好的冰蓝完成签到 ,获得积分10
7秒前
小绵羊完成签到 ,获得积分10
7秒前
虚心求学发布了新的文献求助10
8秒前
自信尔竹发布了新的文献求助10
9秒前
难过橘子发布了新的文献求助10
10秒前
10秒前
xiaowei666发布了新的文献求助30
10秒前
含糊的沛蓝关注了科研通微信公众号
10秒前
11秒前
12秒前
12秒前
orixero应助碎月采纳,获得10
13秒前
13秒前
jianwuzhou发布了新的文献求助10
14秒前
14秒前
baronge发布了新的文献求助20
15秒前
haha完成签到,获得积分10
15秒前
田様应助高唯程采纳,获得10
15秒前
Jasper应助62ccc采纳,获得10
16秒前
16秒前
HY发布了新的文献求助30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Constitutional and Administrative Law 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5394047
求助须知:如何正确求助?哪些是违规求助? 4515419
关于积分的说明 14053732
捐赠科研通 4426550
什么是DOI,文献DOI怎么找? 2431454
邀请新用户注册赠送积分活动 1423549
关于科研通互助平台的介绍 1402541