LAD-Net: A Novel Light Weight Model for Early Apple Leaf Pests and Diseases Classification

白粉病 叶斑病 卷积(计算机科学) 计算机科学 园艺 人工智能 模式识别(心理学) 生物 数学 人工神经网络
作者
Xianyu Zhu,Jinjiang Li,Runchang Jia,Bin Liu,Zhuohan Yao,Ai-Hong Yuan,Yingqiu Huo,Haixi Zhang
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:20 (2): 1156-1169 被引量:9
标识
DOI:10.1109/tcbb.2022.3191854
摘要

Aphids, brown spots, mosaics, rusts, powdery mildew and Alternaria blotches are common types of early apple leaf pests and diseases that severely affect the yield and quality of apples. Recently, deep learning has been regarded as the best classification model for apple leaf pests and diseases. However, these models with large parameters have difficulty providing an accurate and fast diagnosis of apple leaf pests and diseases on mobile terminals. This paper proposes a novel and real-time early apple leaf disease recognition model. AD Convolution is firstly utilized to replace standard convolution to make smaller number of parameters and calculations. Meanwhile, a LAD-Inception is built to enhance the ability of extracting multiscale features of different sizes of disease spots. Finally, the LAD-Net model is built by the LR-CBAM and the LAD-Inception modules, replacing a full connection with global average pooling to further reduce parameters. The results show that the LAD-Net, with a size of only 1.25MB, can achieve a recognition performance of 98.58%. Additionally, it is only delayed by 15.2ms on HUAWEI P40 and by 100.1ms on Jetson Nano, illustrating that the LAD-Net can accurately recognize early apple leaf pests and diseases on mobile devices in real-time, providing portable technical support.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DerekLee发布了新的文献求助10
1秒前
1秒前
李成哲完成签到,获得积分10
1秒前
万能图书馆应助whh采纳,获得10
2秒前
李爱国应助NINI采纳,获得30
2秒前
3秒前
4秒前
5秒前
宠溺完成签到 ,获得积分10
5秒前
qq完成签到,获得积分10
5秒前
Oliver完成签到,获得积分10
5秒前
Sink完成签到,获得积分10
6秒前
666发布了新的文献求助10
6秒前
洁儿完成签到 ,获得积分10
6秒前
7秒前
8秒前
完美世界应助研友_n0QYAZ采纳,获得10
8秒前
LZHWSND发布了新的文献求助10
9秒前
黑暗幽灵完成签到,获得积分10
9秒前
科研通AI2S应助youyuer采纳,获得10
9秒前
冷语完成签到,获得积分20
10秒前
_呱_应助lc339采纳,获得10
10秒前
11秒前
哈拉少完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
15秒前
科研通AI2S应助小狐狸采纳,获得10
15秒前
15秒前
15秒前
16秒前
16秒前
Alaskan发布了新的文献求助10
17秒前
江子川发布了新的文献求助10
18秒前
19秒前
InfoNinja应助Diplogen采纳,获得50
19秒前
学术蝗虫发布了新的文献求助10
19秒前
20秒前
楼少博完成签到,获得积分10
21秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124857
求助须知:如何正确求助?哪些是违规求助? 2775196
关于积分的说明 7725657
捐赠科研通 2430668
什么是DOI,文献DOI怎么找? 1291358
科研通“疑难数据库(出版商)”最低求助积分说明 622123
版权声明 600328