The application of statistical preprocessing on spectral data does not always guarantee the improvement of the predictive quality of multivariate models: Case of soil spectroscopy applied to Moroccan soils

偏最小二乘回归 多元统计 数据预处理 数学 预处理器 统计 生物系统 计算机科学 人工智能 生物
作者
Issam Barra,Hamza Briak,Fassil Kebede
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:121: 103409-103409 被引量:3
标识
DOI:10.1016/j.vibspec.2022.103409
摘要

Statistical preprocessing methods are widely used to improve the predictive performance of chemometric models especially on MIR and NIR spectral database. The main role of pretreatments in the case of soil spectroscopy is to remove/reduce the scattering impact, thus, highlight the part of the signal related to the chemical, physical or biological properties of interest. Nevertheless, given the complexity of the soil as a matrix, together the pure absorption data and the information hidden in the scattering are of key interest as they cooperatively describe the physicochemical state of the soil samples. Consequently, pretreatment methods that removes/ reduces the scattering material in the spectroscopic data may lower the predictive quality of the multivariate models. The purpose of this study was to explore the effect of preprocessing methods on FTIR spectra of soil samples and test the hypothesis that the use of scatter correction techniques as pretreatment (Viz. standard normal variate, Savitzky-Golay 1st and 2nd derivatives, and the multiplicative scatter correction) does not guarantee the improvement of the predictive performance of partial least squares regression models for the prediction of total carbon, organic carbon and total nitrogen in soil samples. The obtained results showed that among all the multivariate calibrations, the PLS models set-up on the unprocessed spectral data led to similar/better predictive qualities for the estimation of selected soil properties especially for total carbon with an R2 of 0.92 and RMSECV of 0.129, either because the information contained in the scattering background is important for the predictions or there is no scatter in the spectral data. Hence, FTIR spectroscopy as a simple, fast and nondestructive analytical method that in many cases will not require a supplementary effort when performing chemometric modeling by avoiding the preprocessing step could be highly recommended for soil health indicators prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生鱼安乐完成签到,获得积分10
1秒前
te发布了新的文献求助10
1秒前
091完成签到 ,获得积分10
1秒前
Roosterrr发布了新的文献求助10
2秒前
2秒前
2秒前
七塔蹦完成签到,获得积分10
2秒前
菜菜完成签到 ,获得积分10
3秒前
是阿刁完成签到,获得积分10
4秒前
觅与蜜发布了新的文献求助10
4秒前
梦璃完成签到 ,获得积分10
6秒前
6秒前
好运LL完成签到 ,获得积分10
10秒前
英俊的铭应助DYZ采纳,获得10
10秒前
所所应助haorandu采纳,获得10
11秒前
lzb发布了新的文献求助10
11秒前
彭于晏应助成就的迎夏采纳,获得10
13秒前
xixi很困发布了新的文献求助20
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
研友_850aeZ完成签到,获得积分0
16秒前
zhy完成签到,获得积分10
16秒前
myq完成签到 ,获得积分10
16秒前
蝌蚪发布了新的文献求助10
16秒前
笑哈哈完成签到,获得积分10
17秒前
觅与蜜完成签到,获得积分10
18秒前
19秒前
19秒前
爱听歌的糖豆完成签到,获得积分0
19秒前
21秒前
我是老大应助YU采纳,获得10
21秒前
科研通AI2S应助zhy采纳,获得10
21秒前
21秒前
香蕉觅云应助小Z采纳,获得10
23秒前
shhoing应助华海亦采纳,获得10
23秒前
Murphy完成签到,获得积分10
23秒前
DYZ发布了新的文献求助10
24秒前
sunshine_920完成签到,获得积分10
25秒前
齐嘉懿发布了新的文献求助10
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539445
求助须知:如何正确求助?哪些是违规求助? 4626188
关于积分的说明 14598305
捐赠科研通 4567104
什么是DOI,文献DOI怎么找? 2503781
邀请新用户注册赠送积分活动 1481606
关于科研通互助平台的介绍 1453214