The application of statistical preprocessing on spectral data does not always guarantee the improvement of the predictive quality of multivariate models: Case of soil spectroscopy applied to Moroccan soils

偏最小二乘回归 多元统计 数据预处理 数学 预处理器 统计 生物系统 计算机科学 人工智能 生物
作者
Issam Barra,Hamza Briak,Fassil Kebede
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:121: 103409-103409 被引量:3
标识
DOI:10.1016/j.vibspec.2022.103409
摘要

Statistical preprocessing methods are widely used to improve the predictive performance of chemometric models especially on MIR and NIR spectral database. The main role of pretreatments in the case of soil spectroscopy is to remove/reduce the scattering impact, thus, highlight the part of the signal related to the chemical, physical or biological properties of interest. Nevertheless, given the complexity of the soil as a matrix, together the pure absorption data and the information hidden in the scattering are of key interest as they cooperatively describe the physicochemical state of the soil samples. Consequently, pretreatment methods that removes/ reduces the scattering material in the spectroscopic data may lower the predictive quality of the multivariate models. The purpose of this study was to explore the effect of preprocessing methods on FTIR spectra of soil samples and test the hypothesis that the use of scatter correction techniques as pretreatment (Viz. standard normal variate, Savitzky-Golay 1st and 2nd derivatives, and the multiplicative scatter correction) does not guarantee the improvement of the predictive performance of partial least squares regression models for the prediction of total carbon, organic carbon and total nitrogen in soil samples. The obtained results showed that among all the multivariate calibrations, the PLS models set-up on the unprocessed spectral data led to similar/better predictive qualities for the estimation of selected soil properties especially for total carbon with an R2 of 0.92 and RMSECV of 0.129, either because the information contained in the scattering background is important for the predictions or there is no scatter in the spectral data. Hence, FTIR spectroscopy as a simple, fast and nondestructive analytical method that in many cases will not require a supplementary effort when performing chemometric modeling by avoiding the preprocessing step could be highly recommended for soil health indicators prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Yxs发布了新的文献求助10
刚刚
汉堡包应助笑一笑采纳,获得10
1秒前
史尔美完成签到,获得积分10
1秒前
jingyu发布了新的文献求助10
1秒前
1111111111应助xiao采纳,获得10
1秒前
赵某人完成签到,获得积分10
1秒前
CipherSage应助彩色的云采纳,获得10
1秒前
Cynthia完成签到,获得积分10
2秒前
鳗鱼绿蝶完成签到,获得积分10
2秒前
自由的松发布了新的文献求助10
3秒前
1111发布了新的文献求助10
3秒前
只只发布了新的文献求助10
3秒前
CodeCraft应助啊撒网大大e采纳,获得10
3秒前
陶醉白梅发布了新的文献求助10
4秒前
Tanya发布了新的文献求助10
4秒前
333发布了新的文献求助10
4秒前
YONG完成签到,获得积分10
5秒前
5秒前
lucid发布了新的文献求助10
5秒前
一支蕉发布了新的文献求助10
6秒前
激情的乌龟完成签到,获得积分10
6秒前
科研疯狂者完成签到,获得积分10
6秒前
科研废人完成签到,获得积分10
6秒前
糖不太甜完成签到,获得积分10
6秒前
八九发布了新的文献求助10
7秒前
8秒前
8秒前
ldhylm完成签到,获得积分10
9秒前
9秒前
大方听白完成签到 ,获得积分10
9秒前
10秒前
10秒前
肖望应助周小鱼采纳,获得10
10秒前
董雪发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
自觉灵波完成签到 ,获得积分10
11秒前
11秒前
CJJJ发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661137
求助须知:如何正确求助?哪些是违规求助? 4837217
关于积分的说明 15093992
捐赠科研通 4819845
什么是DOI,文献DOI怎么找? 2579617
邀请新用户注册赠送积分活动 1533925
关于科研通互助平台的介绍 1492648