The application of statistical preprocessing on spectral data does not always guarantee the improvement of the predictive quality of multivariate models: Case of soil spectroscopy applied to Moroccan soils

偏最小二乘回归 多元统计 数据预处理 数学 预处理器 统计 生物系统 计算机科学 人工智能 生物
作者
Issam Barra,Hamza Briak,Fassil Kebede
出处
期刊:Vibrational Spectroscopy [Elsevier]
卷期号:121: 103409-103409 被引量:3
标识
DOI:10.1016/j.vibspec.2022.103409
摘要

Statistical preprocessing methods are widely used to improve the predictive performance of chemometric models especially on MIR and NIR spectral database. The main role of pretreatments in the case of soil spectroscopy is to remove/reduce the scattering impact, thus, highlight the part of the signal related to the chemical, physical or biological properties of interest. Nevertheless, given the complexity of the soil as a matrix, together the pure absorption data and the information hidden in the scattering are of key interest as they cooperatively describe the physicochemical state of the soil samples. Consequently, pretreatment methods that removes/ reduces the scattering material in the spectroscopic data may lower the predictive quality of the multivariate models. The purpose of this study was to explore the effect of preprocessing methods on FTIR spectra of soil samples and test the hypothesis that the use of scatter correction techniques as pretreatment (Viz. standard normal variate, Savitzky-Golay 1st and 2nd derivatives, and the multiplicative scatter correction) does not guarantee the improvement of the predictive performance of partial least squares regression models for the prediction of total carbon, organic carbon and total nitrogen in soil samples. The obtained results showed that among all the multivariate calibrations, the PLS models set-up on the unprocessed spectral data led to similar/better predictive qualities for the estimation of selected soil properties especially for total carbon with an R2 of 0.92 and RMSECV of 0.129, either because the information contained in the scattering background is important for the predictions or there is no scatter in the spectral data. Hence, FTIR spectroscopy as a simple, fast and nondestructive analytical method that in many cases will not require a supplementary effort when performing chemometric modeling by avoiding the preprocessing step could be highly recommended for soil health indicators prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
qhdsyxy完成签到 ,获得积分0
4秒前
甜蜜水蜜桃完成签到 ,获得积分10
5秒前
FOB完成签到,获得积分10
7秒前
青野乾朔完成签到 ,获得积分10
7秒前
yyds应助FOB采纳,获得50
10秒前
LJY完成签到 ,获得积分10
11秒前
修兮完成签到 ,获得积分10
11秒前
gzsy完成签到 ,获得积分10
14秒前
Matberry完成签到 ,获得积分10
17秒前
筱诸雄完成签到,获得积分10
17秒前
谦让汝燕完成签到,获得积分10
27秒前
真的不想干活了完成签到,获得积分10
28秒前
糊涂的青烟完成签到 ,获得积分10
28秒前
29秒前
_h完成签到 ,获得积分10
31秒前
史克珍香完成签到 ,获得积分10
34秒前
小月顺利毕业版完成签到,获得积分10
34秒前
36秒前
831143完成签到 ,获得积分0
37秒前
灼灼朗朗完成签到,获得积分10
37秒前
pen完成签到 ,获得积分10
37秒前
2568269431完成签到 ,获得积分10
41秒前
42秒前
fiona完成签到,获得积分0
43秒前
波波完成签到 ,获得积分10
45秒前
鲤鱼元槐发布了新的文献求助10
46秒前
sunnyqqz完成签到,获得积分10
49秒前
hyt完成签到 ,获得积分10
52秒前
Zilch完成签到 ,获得积分10
53秒前
S.S.N完成签到 ,获得积分10
54秒前
氟锑酸完成签到 ,获得积分10
57秒前
宇文雨文完成签到,获得积分10
58秒前
magicyang完成签到,获得积分10
59秒前
小李完成签到 ,获得积分10
59秒前
机智的孤兰完成签到 ,获得积分10
1分钟前
李垣锦完成签到 ,获得积分10
1分钟前
猜不猜不完成签到 ,获得积分10
1分钟前
阿莳完成签到 ,获得积分10
1分钟前
俏皮诺言完成签到,获得积分10
1分钟前
Kyrie完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498623
求助须知:如何正确求助?哪些是违规求助? 4595798
关于积分的说明 14449800
捐赠科研通 4528763
什么是DOI,文献DOI怎么找? 2481719
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438561