Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助garrick采纳,获得10
刚刚
刚刚
QYPANG发布了新的文献求助10
1秒前
笨笨豌豆完成签到 ,获得积分10
1秒前
3秒前
急诊守夜人完成签到,获得积分10
5秒前
酷波er应助李昕123采纳,获得10
6秒前
111发布了新的文献求助10
6秒前
黄花花完成签到,获得积分10
7秒前
7秒前
爆米花应助研友_nVWP2Z采纳,获得10
7秒前
人言可畏完成签到 ,获得积分10
7秒前
SemiConduAG发布了新的文献求助30
8秒前
Ava应助北陆小猫采纳,获得10
10秒前
10秒前
xss发布了新的文献求助10
12秒前
14秒前
科研达人发布了新的文献求助10
15秒前
17秒前
18秒前
研友_nVWP2Z发布了新的文献求助10
19秒前
Hello应助我要向阳而生采纳,获得10
20秒前
科研通AI2S应助北陆小猫采纳,获得10
20秒前
20秒前
gsji完成签到 ,获得积分10
21秒前
在水一方应助Baneyhua采纳,获得10
22秒前
xss完成签到,获得积分20
22秒前
田様应助聪慧的凡灵采纳,获得10
23秒前
坚强的紫菜完成签到 ,获得积分10
23秒前
vv发布了新的文献求助10
23秒前
23秒前
科目三应助范白白采纳,获得10
24秒前
27秒前
星辰大海应助北陆小猫采纳,获得10
29秒前
nananan完成签到,获得积分10
30秒前
还好发布了新的文献求助10
31秒前
31秒前
没写名字233完成签到 ,获得积分10
32秒前
lemon完成签到 ,获得积分10
34秒前
34秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993004
求助须知:如何正确求助?哪些是违规求助? 3533831
关于积分的说明 11263946
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882968
科研通“疑难数据库(出版商)”最低求助积分说明 809629