Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒心易烟完成签到 ,获得积分10
刚刚
阿南完成签到,获得积分10
1秒前
11关注了科研通微信公众号
2秒前
积极的中蓝完成签到,获得积分10
3秒前
科研通AI2S应助迷路的铸海采纳,获得10
6秒前
麻吉发布了新的文献求助10
8秒前
8秒前
yhr发布了新的文献求助10
9秒前
12秒前
12秒前
本人完成签到 ,获得积分10
14秒前
17秒前
yhr完成签到,获得积分20
17秒前
17秒前
马里奥爱科研完成签到,获得积分10
19秒前
sige完成签到,获得积分10
22秒前
23秒前
25秒前
JamesPei应助wu采纳,获得10
27秒前
27秒前
27秒前
xiaoxiao发布了新的文献求助10
29秒前
29秒前
斯人完成签到 ,获得积分10
32秒前
xinyue发布了新的文献求助10
32秒前
咕噜发布了新的文献求助30
32秒前
慕青应助陈迹采纳,获得10
32秒前
1L完成签到,获得积分10
33秒前
自觉的向日葵完成签到,获得积分10
34秒前
12366666完成签到,获得积分10
35秒前
嘎嘎楽发布了新的文献求助10
36秒前
完美世界应助韦觅松采纳,获得10
37秒前
可可杨发布了新的文献求助10
37秒前
37秒前
38秒前
诸夏柳完成签到,获得积分20
39秒前
40秒前
yiyi完成签到,获得积分10
40秒前
灵巧代柔完成签到 ,获得积分10
41秒前
yiyi发布了新的文献求助10
44秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
The Healthy Socialist Life in Maoist China 600
The Vladimirov Diaries [by Peter Vladimirov] 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3267951
求助须知:如何正确求助?哪些是违规求助? 2907366
关于积分的说明 8341705
捐赠科研通 2577991
什么是DOI,文献DOI怎么找? 1401497
科研通“疑难数据库(出版商)”最低求助积分说明 655037
邀请新用户注册赠送积分活动 634108