Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助刘言采纳,获得10
1秒前
1秒前
搞怪山晴发布了新的文献求助10
1秒前
3秒前
JamesPei应助直率的问筠采纳,获得10
4秒前
朻安完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
星辰大海应助黑YA采纳,获得10
6秒前
7秒前
chenhouhan发布了新的文献求助20
7秒前
8秒前
8秒前
leez发布了新的文献求助10
9秒前
哎呦你干嘛完成签到,获得积分20
9秒前
Su发布了新的文献求助10
10秒前
pluto应助独特的绮山采纳,获得10
10秒前
wanci应助星星采纳,获得10
11秒前
11秒前
cetomacrogol完成签到,获得积分10
11秒前
12秒前
感动的小懒虫完成签到,获得积分20
12秒前
12秒前
哈哈哈完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
ybybyb1213发布了新的文献求助30
13秒前
yomi完成签到 ,获得积分10
15秒前
15秒前
15秒前
16秒前
热心雪一完成签到 ,获得积分10
16秒前
16秒前
pluto应助平头张采纳,获得10
16秒前
量子星尘发布了新的文献求助10
17秒前
liukanhai完成签到,获得积分10
17秒前
zzgpku应助科研通管家采纳,获得10
17秒前
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595