Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
汐风发布了新的文献求助10
2秒前
美好斓发布了新的文献求助30
2秒前
lllll发布了新的文献求助10
2秒前
浪子应助舒服的摇伽采纳,获得10
2秒前
Twbzz完成签到,获得积分20
2秒前
456完成签到,获得积分10
3秒前
852应助Huang采纳,获得10
3秒前
爆米花应助Ryo采纳,获得10
3秒前
3秒前
chen完成签到,获得积分10
4秒前
小瑞发布了新的文献求助10
4秒前
共享精神应助TY采纳,获得10
5秒前
haimianbaobao完成签到 ,获得积分10
5秒前
情怀应助sghsh采纳,获得10
5秒前
科研通AI6应助dongjingbutaire采纳,获得10
5秒前
456发布了新的文献求助10
5秒前
kkk完成签到,获得积分10
5秒前
Cynthia发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
宣千易发布了新的文献求助10
7秒前
柔弱的便当完成签到,获得积分10
7秒前
年轻的问兰完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
彭于晏应助Jasmine采纳,获得10
8秒前
8秒前
Orange应助little_forest采纳,获得10
9秒前
小火孩发布了新的文献求助10
9秒前
大个应助顺利的奇异果采纳,获得10
9秒前
酷波er应助herdwind采纳,获得10
10秒前
10秒前
Lucas应助维洛尼亚采纳,获得10
10秒前
无极微光应助HEANZ采纳,获得20
10秒前
liao应助美好斓采纳,获得10
11秒前
单薄不惜完成签到,获得积分10
11秒前
汐风完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667660
求助须知:如何正确求助?哪些是违规求助? 4887012
关于积分的说明 15121059
捐赠科研通 4826441
什么是DOI,文献DOI怎么找? 2584044
邀请新用户注册赠送积分活动 1538066
关于科研通互助平台的介绍 1496210