Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WHaha发布了新的文献求助10
刚刚
1秒前
量子星尘发布了新的文献求助10
1秒前
1秒前
易中华发布了新的文献求助10
1秒前
FashionBoy应助Elf采纳,获得10
2秒前
2秒前
2秒前
残剑月发布了新的文献求助10
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
搜集达人应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
Wind应助科研通管家采纳,获得10
3秒前
张巨锋发布了新的文献求助10
3秒前
3秒前
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
脑洞疼应助科研通管家采纳,获得10
3秒前
3秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Jenna发布了新的文献求助10
4秒前
爆米花应助科研通管家采纳,获得10
4秒前
xiaojinzi发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
Zyxx发布了新的文献求助10
4秒前
SciGPT应助Planck采纳,获得10
5秒前
等待戈多发布了新的文献求助10
5秒前
shaonianzu完成签到 ,获得积分10
5秒前
FRANKFANG发布了新的文献求助10
6秒前
6秒前
王艺霖发布了新的文献求助10
6秒前
所所应助lzjz采纳,获得30
7秒前
嘿嘿关注了科研通微信公众号
7秒前
科研通AI2S应助蚝油盗梨采纳,获得10
7秒前
李耀京发布了新的文献求助30
7秒前
7秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5695186
求助须知:如何正确求助?哪些是违规求助? 5100843
关于积分的说明 15215623
捐赠科研通 4851627
什么是DOI,文献DOI怎么找? 2602586
邀请新用户注册赠送积分活动 1554228
关于科研通互助平台的介绍 1512233