Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助yjo采纳,获得10
1秒前
扇子发布了新的文献求助20
1秒前
3秒前
5秒前
李健应助zhangwenjie采纳,获得10
5秒前
5秒前
daoketuo完成签到,获得积分10
5秒前
daoketuo发布了新的文献求助10
8秒前
唐若冰完成签到,获得积分10
9秒前
积极向上山楂片完成签到,获得积分10
9秒前
嗯啊完成签到,获得积分10
10秒前
11秒前
11秒前
phil完成签到,获得积分10
13秒前
含蓄的赛君完成签到,获得积分10
14秒前
xixi发布了新的文献求助10
16秒前
zyh完成签到 ,获得积分10
17秒前
17秒前
18秒前
18秒前
19秒前
20秒前
积极擎汉完成签到,获得积分10
20秒前
22秒前
苏苏苏完成签到,获得积分10
22秒前
22秒前
健康的网络完成签到,获得积分10
23秒前
24秒前
无花果应助勤奋伟泽采纳,获得30
24秒前
苏苏苏发布了新的文献求助10
26秒前
27秒前
健康的小鸽子完成签到 ,获得积分10
27秒前
小安完成签到,获得积分10
27秒前
咸鱼完成签到,获得积分10
27秒前
大气的半双完成签到,获得积分10
28秒前
微笑语山发布了新的文献求助10
28秒前
李欣宇完成签到,获得积分20
28秒前
爱静静应助daoketuo采纳,获得10
30秒前
爱静静应助daoketuo采纳,获得10
30秒前
跳跃的老鼠完成签到,获得积分10
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4923236
求助须知:如何正确求助?哪些是违规求助? 4193683
关于积分的说明 13025807
捐赠科研通 3965586
什么是DOI,文献DOI怎么找? 2173403
邀请新用户注册赠送积分活动 1190992
关于科研通互助平台的介绍 1100532