已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Assessing Student's Dynamic Knowledge State by Exploring the Question Difficulty Effect

可解释性 计算机科学 关系(数据库) 人工智能 过程(计算) 任务(项目管理) 隐性知识 追踪 代表(政治) 匹配(统计) 国家(计算机科学) 知识管理 机器学习 数据挖掘 管理 政治 政治学 法学 经济 操作系统 数学 统计 算法
作者
Shuanghong Shen,Zhenya Huang,Qi Liu,Yu Su,Shijin Wang,Enhong Chen
标识
DOI:10.1145/3477495.3531939
摘要

Knowledge Tracing (KT), which aims to assess students' dynamic knowledge states when practicing on various questions, is a fundamental research task for offering intelligent services in online learning systems. Researchers have devoted significant efforts to developing KT models with impressive performance. However, in existing KT methods, the related question difficulty level, which directly affects students' knowledge state in learning, has not been effectively explored and employed. In this paper, we focus on exploring the question difficulty effect on learning to improve student's knowledge state assessment and propose the DIfficulty Matching Knowledge Tracing (DIMKT) model. Specifically, we first explicitly incorporate the difficulty level into the question representation. Then, to establish the relation between students' knowledge state and the question difficulty level during the practice process, we accordingly design an adaptive sequential neural network in three stages: (1) measuring students' subjective feelings of the question difficulty before practice; (2) estimating students' personalized knowledge acquisition while answering questions of different difficulty levels; (3) updating students' knowledge state in varying degrees to match the question difficulty level after practice. Finally, we conduct extensive experiments on real-world datasets, and the results demonstrate that DIMKT outperforms state-of-the-art KT models. Moreover, DIMKT shows superior interpretability by exploring the question difficulty effect when making predictions. Our codes are available at https://github.com/shshen-closer/DIMKT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bx完成签到,获得积分10
1秒前
2秒前
小蘑菇应助Ting330采纳,获得10
2秒前
3秒前
13给13的求助进行了留言
3秒前
小樊同学完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
4秒前
4秒前
NexusExplorer应助微笑的采珊采纳,获得50
5秒前
lzh完成签到 ,获得积分10
7秒前
田様应助淡淡的南风采纳,获得30
7秒前
搜集达人应助淡淡的南风采纳,获得10
7秒前
科研通AI6应助淡淡的南风采纳,获得10
7秒前
ceeray23应助淡淡的南风采纳,获得10
7秒前
8秒前
Zhangyitian发布了新的文献求助10
8秒前
8秒前
9秒前
网易乐完成签到,获得积分20
10秒前
11秒前
12秒前
sun发布了新的文献求助10
14秒前
wxyshare应助可爱寻芹采纳,获得10
14秒前
kk99123应助淡淡的南风采纳,获得10
14秒前
搜集达人应助淡淡的南风采纳,获得30
14秒前
ho应助淡淡的南风采纳,获得30
14秒前
情怀应助淡淡的南风采纳,获得10
14秒前
小马甲应助科研通管家采纳,获得10
14秒前
kentonchow应助淡淡的南风采纳,获得50
14秒前
ccm应助科研通管家采纳,获得10
14秒前
JamesPei应助淡淡的南风采纳,获得10
14秒前
14秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
CodeCraft应助淡淡的南风采纳,获得30
14秒前
15秒前
kentonchow应助科研通管家采纳,获得10
15秒前
Lucas应助淡淡的南风采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The YWCA in China The Making of a Chinese Christian Women’s Institution, 1899–1957 400
Numerical controlled progressive forming as dieless forming 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5400986
求助须知:如何正确求助?哪些是违规求助? 4520031
关于积分的说明 14077904
捐赠科研通 4432951
什么是DOI,文献DOI怎么找? 2433919
邀请新用户注册赠送积分活动 1426111
关于科研通互助平台的介绍 1404733