清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

An in-Depth Study of How Zinc Metal Surface Morphology Determines Aqueous Zinc-Ion Battery Stability

可再生能源 储能 材料科学 钝化 电池(电) 纳米技术 环境科学 工艺工程 环境工程 工程类 电气工程 功率(物理) 量子力学 物理 图层(电子)
作者
Zhenrui Wu,Evan Hansen,Jian Liu
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 14-14
标识
DOI:10.1149/ma2022-01114mtgabs
摘要

In order to achieve the net-zero world initiative and combat the climate crisis, a global consensus of marching towards a sustainable energy structure has been built, where developing reliable, affordable, and sustainable energy storage devices, the medium of storing intermittent surplus electricity from clean and inexhaustible renewable energy sources, such as wind power and solar energy, and transferring to the smart electric grid system, is of great significance [1]. Besides lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the two dominant technologies having been developed substantially in the energy storage industry, researchers started pioneering studies on multivalent-ion systems of Ca [2, 3], Mg [4], Al [5, 6], and Zn [7-9] with competitive advantages, especially the ones as non-flammable economic substitutes, to ease manufacturing burden and enrich practical solutions for widespread application scenarios [10]. Especially, zinc metal with benefits of aqueous compatibility, commensurate capacity (820 mAh/g), and crust abundance, a resurgence of rechargeable zinc-ion batteries (ZIBs) is happening. This battery system with water-based electrolyte chemistries is born with eye-catching benefits of safety and affordability; Zn/MnO 2 with an improved energy density of 409 Wh/kg at 1.9 V is considered a promising candidate for grid-scale energy storage [11]. This revolutionary cheap and safe solution empowers the global energy structural transformation and enriches the public’s awareness of sustainable development. However, like most reactive metals, zinc exposed in the air naturally evolves a dense passivation layer of Zn 5 (CO 3 ) 2 (OH) 6 to discontinue the corrosion by oxygen and humidity, which, in batteries, can passivate the molecular dynamics at the interface between zinc and the electrolyte and demonstrate enormous electron transfer resistance due to the inferior conductivity [12]. Thus, wearing off this passivation layer is considered a facile approach to revitalize the frozen kinetics of zinc ions [13]. Exposing fresh zinc to the electrolyte is also conductive of forming a functional solid-electrolyte interphase (SEI). Studies present that ZnF 2 -rich SEI plays a pivotal role in elongating the cycling life of zinc symmetric cells by effectively screening zinc from electrolyte solvents and reducing their sequence of side reactions [14]. Additionally, a tactful change of zinc’s surface roughness before electrochemical operations should impact electron distribution, zinc nucleation and growth, and SEI formation. Especially, dendrites are often considered guilty of internal short-circuiting of batteries; similar to lithium, the far-end of zinc dendrites can become dead zinc, whose accumulation brings in issues of electrolyte depletion, anodic capacity loss, internal resistance growth, and cell polarization [15]. In this work, a simple method was developed to change the surface of Zn anode to create more nucleation sites with lowered energy barriers (nucleation over-potentials), thus alleviating their dendrite growth. The cycling programs for zinc symmetric cells are standardized by fixing either the depth of cycling (DOC) or the areal current density in accordance with the constant energy or constant power supply in full batteries. In order to enunciate the battery degradation mechanism and shed light on the gas emission problems, we operate a careful electrochemical analysis cooperated with the differential electrochemical mass spectrometry (DEMS) technique. The preliminary data demonstrate an evident impact of initial zinc surface morphology on sequential zinc plating/stripping profiles and eventual lifespans at serial DOCs and current densities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
EVER完成签到 ,获得积分10
3秒前
小张完成签到,获得积分10
21秒前
fan完成签到,获得积分10
27秒前
46秒前
52秒前
baobeikk完成签到,获得积分10
58秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
无悔完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
亿亿亿亿发布了新的文献求助10
1分钟前
拉长的秋白完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
顾矜应助满天都是大萌德采纳,获得10
2分钟前
xiaosui完成签到 ,获得积分10
2分钟前
学术laji完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
lixuebin完成签到 ,获得积分10
2分钟前
3分钟前
迷你的夜天完成签到 ,获得积分10
3分钟前
lyj完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
Emma应助冷静的小虾米采纳,获得200
3分钟前
4分钟前
Sunny完成签到,获得积分10
4分钟前
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
Ava应助精明晓刚采纳,获得10
4分钟前
NattyPoe完成签到,获得积分10
4分钟前
小西完成签到 ,获得积分10
5分钟前
5分钟前
蛋卷完成签到 ,获得积分10
5分钟前
烟花应助雪上一枝蒿采纳,获得10
5分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128795
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069