An in-Depth Study of How Zinc Metal Surface Morphology Determines Aqueous Zinc-Ion Battery Stability

可再生能源 储能 材料科学 钝化 电池(电) 纳米技术 环境科学 工艺工程 环境工程 工程类 电气工程 功率(物理) 物理 图层(电子) 量子力学
作者
Zhenrui Wu,Evan Hansen,Jian Liu
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 14-14
标识
DOI:10.1149/ma2022-01114mtgabs
摘要

In order to achieve the net-zero world initiative and combat the climate crisis, a global consensus of marching towards a sustainable energy structure has been built, where developing reliable, affordable, and sustainable energy storage devices, the medium of storing intermittent surplus electricity from clean and inexhaustible renewable energy sources, such as wind power and solar energy, and transferring to the smart electric grid system, is of great significance [1]. Besides lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the two dominant technologies having been developed substantially in the energy storage industry, researchers started pioneering studies on multivalent-ion systems of Ca [2, 3], Mg [4], Al [5, 6], and Zn [7-9] with competitive advantages, especially the ones as non-flammable economic substitutes, to ease manufacturing burden and enrich practical solutions for widespread application scenarios [10]. Especially, zinc metal with benefits of aqueous compatibility, commensurate capacity (820 mAh/g), and crust abundance, a resurgence of rechargeable zinc-ion batteries (ZIBs) is happening. This battery system with water-based electrolyte chemistries is born with eye-catching benefits of safety and affordability; Zn/MnO 2 with an improved energy density of 409 Wh/kg at 1.9 V is considered a promising candidate for grid-scale energy storage [11]. This revolutionary cheap and safe solution empowers the global energy structural transformation and enriches the public’s awareness of sustainable development. However, like most reactive metals, zinc exposed in the air naturally evolves a dense passivation layer of Zn 5 (CO 3 ) 2 (OH) 6 to discontinue the corrosion by oxygen and humidity, which, in batteries, can passivate the molecular dynamics at the interface between zinc and the electrolyte and demonstrate enormous electron transfer resistance due to the inferior conductivity [12]. Thus, wearing off this passivation layer is considered a facile approach to revitalize the frozen kinetics of zinc ions [13]. Exposing fresh zinc to the electrolyte is also conductive of forming a functional solid-electrolyte interphase (SEI). Studies present that ZnF 2 -rich SEI plays a pivotal role in elongating the cycling life of zinc symmetric cells by effectively screening zinc from electrolyte solvents and reducing their sequence of side reactions [14]. Additionally, a tactful change of zinc’s surface roughness before electrochemical operations should impact electron distribution, zinc nucleation and growth, and SEI formation. Especially, dendrites are often considered guilty of internal short-circuiting of batteries; similar to lithium, the far-end of zinc dendrites can become dead zinc, whose accumulation brings in issues of electrolyte depletion, anodic capacity loss, internal resistance growth, and cell polarization [15]. In this work, a simple method was developed to change the surface of Zn anode to create more nucleation sites with lowered energy barriers (nucleation over-potentials), thus alleviating their dendrite growth. The cycling programs for zinc symmetric cells are standardized by fixing either the depth of cycling (DOC) or the areal current density in accordance with the constant energy or constant power supply in full batteries. In order to enunciate the battery degradation mechanism and shed light on the gas emission problems, we operate a careful electrochemical analysis cooperated with the differential electrochemical mass spectrometry (DEMS) technique. The preliminary data demonstrate an evident impact of initial zinc surface morphology on sequential zinc plating/stripping profiles and eventual lifespans at serial DOCs and current densities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助科研通管家采纳,获得10
刚刚
小左完成签到,获得积分10
刚刚
情怀应助科研通管家采纳,获得10
刚刚
FashionBoy应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
orixero应助科研通管家采纳,获得10
1秒前
大个应助科研通管家采纳,获得10
1秒前
隐形曼青应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
1秒前
华仔应助科研通管家采纳,获得10
1秒前
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
1秒前
奋斗的夏柳完成签到 ,获得积分10
1秒前
BowieHuang应助科研通管家采纳,获得10
1秒前
和谐越彬完成签到,获得积分10
2秒前
奶奶的龙应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小吉麻麻发布了新的文献求助10
2秒前
喜东东应助科研通管家采纳,获得50
2秒前
田様应助科研通管家采纳,获得10
2秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
打打应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
123456qi发布了新的文献求助10
2秒前
天思完成签到,获得积分10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
猪猪hero应助心灵美迎夏采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
小蘑菇应助心灵美迎夏采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
丘比特应助科研通管家采纳,获得10
3秒前
无极微光应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5625453
求助须知:如何正确求助?哪些是违规求助? 4711271
关于积分的说明 14954468
捐赠科研通 4779371
什么是DOI,文献DOI怎么找? 2553732
邀请新用户注册赠送积分活动 1515665
关于科研通互助平台的介绍 1475853