An in-Depth Study of How Zinc Metal Surface Morphology Determines Aqueous Zinc-Ion Battery Stability

可再生能源 储能 材料科学 钝化 电池(电) 纳米技术 环境科学 工艺工程 环境工程 工程类 电气工程 功率(物理) 物理 图层(电子) 量子力学
作者
Zhenrui Wu,Evan Hansen,Jian Liu
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (1): 14-14
标识
DOI:10.1149/ma2022-01114mtgabs
摘要

In order to achieve the net-zero world initiative and combat the climate crisis, a global consensus of marching towards a sustainable energy structure has been built, where developing reliable, affordable, and sustainable energy storage devices, the medium of storing intermittent surplus electricity from clean and inexhaustible renewable energy sources, such as wind power and solar energy, and transferring to the smart electric grid system, is of great significance [1]. Besides lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs), the two dominant technologies having been developed substantially in the energy storage industry, researchers started pioneering studies on multivalent-ion systems of Ca [2, 3], Mg [4], Al [5, 6], and Zn [7-9] with competitive advantages, especially the ones as non-flammable economic substitutes, to ease manufacturing burden and enrich practical solutions for widespread application scenarios [10]. Especially, zinc metal with benefits of aqueous compatibility, commensurate capacity (820 mAh/g), and crust abundance, a resurgence of rechargeable zinc-ion batteries (ZIBs) is happening. This battery system with water-based electrolyte chemistries is born with eye-catching benefits of safety and affordability; Zn/MnO 2 with an improved energy density of 409 Wh/kg at 1.9 V is considered a promising candidate for grid-scale energy storage [11]. This revolutionary cheap and safe solution empowers the global energy structural transformation and enriches the public’s awareness of sustainable development. However, like most reactive metals, zinc exposed in the air naturally evolves a dense passivation layer of Zn 5 (CO 3 ) 2 (OH) 6 to discontinue the corrosion by oxygen and humidity, which, in batteries, can passivate the molecular dynamics at the interface between zinc and the electrolyte and demonstrate enormous electron transfer resistance due to the inferior conductivity [12]. Thus, wearing off this passivation layer is considered a facile approach to revitalize the frozen kinetics of zinc ions [13]. Exposing fresh zinc to the electrolyte is also conductive of forming a functional solid-electrolyte interphase (SEI). Studies present that ZnF 2 -rich SEI plays a pivotal role in elongating the cycling life of zinc symmetric cells by effectively screening zinc from electrolyte solvents and reducing their sequence of side reactions [14]. Additionally, a tactful change of zinc’s surface roughness before electrochemical operations should impact electron distribution, zinc nucleation and growth, and SEI formation. Especially, dendrites are often considered guilty of internal short-circuiting of batteries; similar to lithium, the far-end of zinc dendrites can become dead zinc, whose accumulation brings in issues of electrolyte depletion, anodic capacity loss, internal resistance growth, and cell polarization [15]. In this work, a simple method was developed to change the surface of Zn anode to create more nucleation sites with lowered energy barriers (nucleation over-potentials), thus alleviating their dendrite growth. The cycling programs for zinc symmetric cells are standardized by fixing either the depth of cycling (DOC) or the areal current density in accordance with the constant energy or constant power supply in full batteries. In order to enunciate the battery degradation mechanism and shed light on the gas emission problems, we operate a careful electrochemical analysis cooperated with the differential electrochemical mass spectrometry (DEMS) technique. The preliminary data demonstrate an evident impact of initial zinc surface morphology on sequential zinc plating/stripping profiles and eventual lifespans at serial DOCs and current densities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
xslj完成签到 ,获得积分10
2秒前
机智ss完成签到,获得积分10
2秒前
棕泡泡鸡完成签到 ,获得积分10
2秒前
善学以致用应助ZQP采纳,获得10
2秒前
Yii完成签到,获得积分10
2秒前
栗子完成签到,获得积分10
3秒前
坐忘完成签到 ,获得积分10
3秒前
4秒前
调研昵称发布了新的文献求助10
4秒前
lize5493发布了新的文献求助10
4秒前
清澄发布了新的文献求助10
5秒前
5秒前
顺利毕业完成签到,获得积分10
6秒前
Yii发布了新的文献求助30
6秒前
香山叶正红完成签到 ,获得积分10
7秒前
搜集达人应助要减肥采纳,获得10
7秒前
忧郁慕青发布了新的文献求助10
8秒前
MissXia完成签到,获得积分10
8秒前
8秒前
Yolo完成签到,获得积分10
9秒前
9秒前
rosalieshi应助hzs采纳,获得30
9秒前
生动的海露完成签到,获得积分10
9秒前
华仔应助冷酷的画板采纳,获得10
10秒前
爱书儿的小周完成签到,获得积分10
10秒前
12秒前
调研昵称发布了新的文献求助10
12秒前
杨19980625发布了新的文献求助10
13秒前
ElbingX发布了新的文献求助30
14秒前
张岱帅z完成签到,获得积分10
15秒前
小程别放弃完成签到,获得积分10
15秒前
YY发布了新的文献求助10
16秒前
KK完成签到 ,获得积分10
16秒前
南桑完成签到 ,获得积分10
16秒前
忧郁慕青完成签到,获得积分10
16秒前
Joeswith完成签到,获得积分10
17秒前
深情安青应助Yii采纳,获得10
18秒前
WYY完成签到,获得积分10
18秒前
19秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3162623
求助须知:如何正确求助?哪些是违规求助? 2813541
关于积分的说明 7900768
捐赠科研通 2473078
什么是DOI,文献DOI怎么找? 1316652
科研通“疑难数据库(出版商)”最低求助积分说明 631468
版权声明 602175