Rapid Inference of Nitrogen Oxide Emissions Based on a Top-Down Method with a Physically Informed Variational Autoencoder

氮氧化物 环境科学 自编码 氮氧化物 可解释性 氮氧化物 推论 卫星 计算机科学 人工神经网络 人工智能 化学 工程类 燃烧 航空航天工程 有机化学 废物管理
作者
Jia Xing,Siwei Li,Shuxin Zheng,Chang Liu,Xiaochun Wang,Lin Huang,Ge Song,Yihan He,Shuxiao Wang,Shovan Kumar Sahu,Jia Zhang,Jiang Bian,Yun Zhu,Tie‐Yan Liu,Jiming Hao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (14): 9903-9914 被引量:6
标识
DOI:10.1021/acs.est.1c08337
摘要

Accurate timely estimation of emissions of nitrogen oxides (NOx) is a prerequisite for designing an effective strategy for reducing O3 and PM2.5 pollution. The satellite-based top-down method can provide near-real-time constraints on emissions; however, its efficiency is largely limited by efforts in dealing with the complex emission–concentration response. Here, we propose a novel machine-learning-based method using a physically informed variational autoencoder (VAE) emission predictor to infer NOx emissions from satellite-retrieved surface NO2 concentrations. The computational burden can be significantly reduced with the help of a neural network trained with a chemical transport model, allowing the VAE emission predictor to provide a timely estimation of posterior emissions based on the satellite-retrieved surface NO2 concentration. The VAE emission predictor successfully corrected the underestimation of NOx emissions in rural areas and the overestimation in urban areas, resulting in smaller normalized mean biases (reduced from −0.8 to −0.4) and larger R2 values (increased from 0.4 to 0.7). The interpretability of the VAE emission predictor was investigated using sensitivity analysis by modulating each feature, indicating that NO2 concentration and planetary boundary layer (PBL) height are important for estimating NOx emissions, which is consistent with our common knowledge. The advantages of the VAE emission predictor in efficiency, flexibility, and accuracy demonstrate its great potential in estimating the latest emissions and evaluating the control effectiveness from observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yanguowusheng关注了科研通微信公众号
刚刚
lihongchi完成签到,获得积分10
刚刚
shin0324发布了新的文献求助10
刚刚
www发布了新的文献求助10
1秒前
2秒前
2秒前
自由的蛋挞完成签到,获得积分10
2秒前
meng完成签到,获得积分10
3秒前
shadow完成签到,获得积分10
3秒前
4秒前
017完成签到,获得积分10
4秒前
练习者完成签到,获得积分10
5秒前
6秒前
小马甲应助陶治采纳,获得10
6秒前
Hannibal发布了新的文献求助10
6秒前
8秒前
春天的粥发布了新的文献求助10
9秒前
10秒前
houl发布了新的文献求助10
10秒前
有魅力听枫完成签到,获得积分10
11秒前
活泼学生发布了新的文献求助10
12秒前
Shandongdaxiu完成签到 ,获得积分10
13秒前
itsserene应助稻草人采纳,获得30
13秒前
彭于晏应助张鑫采纳,获得30
14秒前
14秒前
茶暖桉呀完成签到,获得积分10
14秒前
活力冬日发布了新的文献求助20
18秒前
18秒前
小马甲应助学术狗采纳,获得30
19秒前
19秒前
小Z顺利毕业完成签到,获得积分10
20秒前
20秒前
8R60d8给碧蓝不可的求助进行了留言
21秒前
SciGPT应助017采纳,获得10
21秒前
球球关注了科研通微信公众号
21秒前
Q.L发布了新的文献求助10
21秒前
二水完成签到,获得积分10
22秒前
清逸之风完成签到 ,获得积分10
24秒前
24秒前
张鑫发布了新的文献求助30
24秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140111
求助须知:如何正确求助?哪些是违规求助? 2790982
关于积分的说明 7797203
捐赠科研通 2447324
什么是DOI,文献DOI怎么找? 1301841
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194