Rapid Inference of Nitrogen Oxide Emissions Based on a Top-Down Method with a Physically Informed Variational Autoencoder

氮氧化物 环境科学 自编码 氮氧化物 氮气 氮氧化物 推论 计算机科学 人工神经网络 人工智能 化学 工程类 燃烧 有机化学 废物管理
作者
Jia Xing,Siwei Li,Shuxin Zheng,Chang Liu,Xiaochun Wang,Lin Huang,Ge Song,Yihan He,Shuxiao Wang,Shovan Kumar Sahu,Jia Zhang,Jiang Bian,Yun Zhu,Tie‐Yan Liu,Jiming Hao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (14): 9903-9914 被引量:13
标识
DOI:10.1021/acs.est.1c08337
摘要

Accurate timely estimation of emissions of nitrogen oxides (NOx) is a prerequisite for designing an effective strategy for reducing O3 and PM2.5 pollution. The satellite-based top-down method can provide near-real-time constraints on emissions; however, its efficiency is largely limited by efforts in dealing with the complex emission-concentration response. Here, we propose a novel machine-learning-based method using a physically informed variational autoencoder (VAE) emission predictor to infer NOx emissions from satellite-retrieved surface NO2 concentrations. The computational burden can be significantly reduced with the help of a neural network trained with a chemical transport model, allowing the VAE emission predictor to provide a timely estimation of posterior emissions based on the satellite-retrieved surface NO2 concentration. The VAE emission predictor successfully corrected the underestimation of NOx emissions in rural areas and the overestimation in urban areas, resulting in smaller normalized mean biases (reduced from -0.8 to -0.4) and larger R2 values (increased from 0.4 to 0.7). The interpretability of the VAE emission predictor was investigated using sensitivity analysis by modulating each feature, indicating that NO2 concentration and planetary boundary layer (PBL) height are important for estimating NOx emissions, which is consistent with our common knowledge. The advantages of the VAE emission predictor in efficiency, flexibility, and accuracy demonstrate its great potential in estimating the latest emissions and evaluating the control effectiveness from observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ladysansan完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
hyl发布了新的文献求助10
刚刚
刚刚
1秒前
吴鹏完成签到,获得积分10
1秒前
1秒前
我陈雯雯实名上网完成签到,获得积分10
1秒前
丁丁丁发布了新的文献求助10
1秒前
2秒前
2秒前
old赵发布了新的文献求助10
2秒前
Akirus应助guojingjing采纳,获得10
2秒前
2秒前
3秒前
庆何逐发布了新的文献求助30
4秒前
王小明完成签到,获得积分10
5秒前
5秒前
激昂的逊完成签到 ,获得积分10
5秒前
5秒前
6秒前
keyu完成签到,获得积分10
6秒前
6秒前
orixero应助Yolo采纳,获得10
6秒前
hyl完成签到,获得积分10
6秒前
7秒前
同济外外博完成签到 ,获得积分10
7秒前
shadow发布了新的文献求助20
7秒前
量子星尘发布了新的文献求助10
7秒前
尊敬向雪发布了新的文献求助20
7秒前
赘婿应助zhoufz采纳,获得10
7秒前
8秒前
林嘉楠发布了新的文献求助10
8秒前
杰瑞完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
XI发布了新的文献求助10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784255
求助须知:如何正确求助?哪些是违规求助? 5681721
关于积分的说明 15463641
捐赠科研通 4913544
什么是DOI,文献DOI怎么找? 2644711
邀请新用户注册赠送积分活动 1592596
关于科研通互助平台的介绍 1547133