Rapid Inference of Nitrogen Oxide Emissions Based on a Top-Down Method with a Physically Informed Variational Autoencoder

氮氧化物 环境科学 自编码 氮氧化物 可解释性 氮氧化物 推论 卫星 计算机科学 人工神经网络 人工智能 化学 工程类 燃烧 航空航天工程 有机化学 废物管理
作者
Jia Xing,Siwei Li,Shuxin Zheng,Chang Liu,Xiaochun Wang,Lin Huang,Ge Song,Yihan He,Shuxiao Wang,Shovan Kumar Sahu,Jia Zhang,Jiang Bian,Yun Zhu,Tie‐Yan Liu,Jiming Hao
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:56 (14): 9903-9914 被引量:6
标识
DOI:10.1021/acs.est.1c08337
摘要

Accurate timely estimation of emissions of nitrogen oxides (NOx) is a prerequisite for designing an effective strategy for reducing O3 and PM2.5 pollution. The satellite-based top-down method can provide near-real-time constraints on emissions; however, its efficiency is largely limited by efforts in dealing with the complex emission–concentration response. Here, we propose a novel machine-learning-based method using a physically informed variational autoencoder (VAE) emission predictor to infer NOx emissions from satellite-retrieved surface NO2 concentrations. The computational burden can be significantly reduced with the help of a neural network trained with a chemical transport model, allowing the VAE emission predictor to provide a timely estimation of posterior emissions based on the satellite-retrieved surface NO2 concentration. The VAE emission predictor successfully corrected the underestimation of NOx emissions in rural areas and the overestimation in urban areas, resulting in smaller normalized mean biases (reduced from −0.8 to −0.4) and larger R2 values (increased from 0.4 to 0.7). The interpretability of the VAE emission predictor was investigated using sensitivity analysis by modulating each feature, indicating that NO2 concentration and planetary boundary layer (PBL) height are important for estimating NOx emissions, which is consistent with our common knowledge. The advantages of the VAE emission predictor in efficiency, flexibility, and accuracy demonstrate its great potential in estimating the latest emissions and evaluating the control effectiveness from observations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小王完成签到 ,获得积分10
1秒前
jiying131发布了新的文献求助10
1秒前
luogan完成签到,获得积分10
1秒前
1秒前
何佳完成签到,获得积分10
2秒前
L1完成签到 ,获得积分10
3秒前
科研通AI5应助毛毛采纳,获得10
3秒前
3秒前
YBOH发布了新的文献求助10
3秒前
4秒前
4秒前
奋斗的珍发布了新的文献求助20
5秒前
粗犷的抽屉完成签到,获得积分10
5秒前
lllldjhdy完成签到 ,获得积分10
5秒前
爆米花应助ayayaya采纳,获得10
5秒前
笑羽完成签到,获得积分0
5秒前
6秒前
逃亡的小狗完成签到,获得积分10
6秒前
6秒前
zyx完成签到 ,获得积分10
6秒前
一次性过发布了新的文献求助10
6秒前
乐乐应助zly采纳,获得10
6秒前
7秒前
7秒前
宴之敖者完成签到,获得积分10
7秒前
轻风发布了新的文献求助10
7秒前
7秒前
归尘应助yuaasusanaann采纳,获得10
7秒前
小马甲应助七柒采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
Re完成签到,获得积分10
8秒前
liu发布了新的文献求助30
9秒前
李健应助科研通管家采纳,获得10
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
渡111应助科研通管家采纳,获得50
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
牛爷爷应助科研通管家采纳,获得10
9秒前
爱吃香菜完成签到,获得积分10
9秒前
陆拾壩发布了新的文献求助10
9秒前
华仔应助科研通管家采纳,获得30
9秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650