Furthering the precision of RUSLE soil erosion with PSInSAR data: an innovative model

通用土壤流失方程 腐蚀 WEPP公司 遥感 环境科学 土壤科学 水文学(农业) 地理 土壤流失 水土保持 地质学 岩土工程 地貌学 考古 农业
作者
J. Aswathi,K.S. Sajinkumar,A. Rajaneesh,Thomas Oommen,El Hachemi Bouali,R.B. Binojkumar,V. R. Rani,Jobin Thomas,K. P. Thrivikramji,R. S. Ajin,Mohamed Abioui
出处
期刊:Geocarto International [Informa]
卷期号:37 (27): 16108-16131 被引量:27
标识
DOI:10.1080/10106049.2022.2105407
摘要

Soil erosion is a severe environmental problem worldwide, especially in tropical regions. The Revised Universal Soil Loss Equation (RUSLE), one of the universally accepted empirical soil erosion models, is quite commonly used in tropical climatic conditions to estimate the magnitude and severity of soil erosion. This study, apart from identifying the role of individual parameters in influencing the results of the RUSLE, also aims at refining the RUSLE results by incorporating the state-of-the-art technique Persistent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) in a GIS environment by utilizing its ability to measure minute surface changes in millimetre levels. Apart from this novel approach of prioritising soil erosion classes using PSInSAR, the eroding surface conditions were also studied using low coherence value (<0.75 in this study). The spatially and temporally averaged annual soil loss and net soil erosion (2015–2019), derived through RUSLE and transport limited sediment delivery (TLSD) approach, respectively, was improved by spatially integrating the PSInSAR velocity map. The integrated methodological framework is demonstrated for a tropical river basin in South India (Muvattupuzha River Basin [MRB]), which shows a mean rate of net soil loss of 6.8 ton/ha/yr, and nearly 8% of the area experiences deposition. Our approach to improve the accuracy of RUSLE-based soil erosion classes using PSInSAR techniques clearly demarcated the areas that call for utmost priority in implementing management practices. The corollary results show that the very severe soil erosion class is characterized by PSI velocity with higher negative values, followed by the successively lower classes. Results strongly suggest that RUSLE output can be improved as well as validated using a velocity map derived from radar data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿诺应助DZ采纳,获得30
1秒前
科研通AI6.1应助美妞儿~采纳,获得10
1秒前
Star1983发布了新的文献求助10
1秒前
英姑应助小毛采纳,获得10
1秒前
雪白依云完成签到 ,获得积分10
1秒前
英勇海发布了新的文献求助10
1秒前
wanci应助乘风采纳,获得10
2秒前
ouyekk完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
萌羊发布了新的文献求助10
5秒前
5秒前
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
5秒前
smottom应助科研通管家采纳,获得10
5秒前
smottom应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
香菜完成签到,获得积分10
5秒前
华仔应助科研通管家采纳,获得10
5秒前
华仔应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
BowieHuang应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
6秒前
6秒前
smottom应助科研通管家采纳,获得10
6秒前
smottom应助科研通管家采纳,获得10
6秒前
juju1234完成签到,获得积分10
6秒前
6秒前
黑白发布了新的文献求助10
6秒前
6秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776553
求助须知:如何正确求助?哪些是违规求助? 5629807
关于积分的说明 15443193
捐赠科研通 4908648
什么是DOI,文献DOI怎么找? 2641367
邀请新用户注册赠送积分活动 1589320
关于科研通互助平台的介绍 1543933