Truncated Residual Based Plug-and-Play ADMM Algorithm for MRI Reconstruction

残余物 算法 趋同(经济学) 计算机科学 降噪 人工神经网络 人工智能 迭代法 数学优化 数学 经济增长 经济
作者
Ruizhi Hou,Fang Li,Guixu Zhang
出处
期刊:IEEE transactions on computational imaging 卷期号:8: 96-108 被引量:24
标识
DOI:10.1109/tci.2022.3145187
摘要

Plug-and-play alternating direction method of multiplier (PnP-ADMM) can be used to solve the magnetic resonance imaging (MRI) reconstruction problem, which allows plugging the pre-trained denoiser to solve the denoising-like subproblem in ADMM. Many researchers explore the property of the denoiser to ensure the convergence of PnP-ADMM. However, it is hard to prove that the pre-trained deep learning based denoiser satisfies the assumption. In this paper, we propose a truncated residual based PnP-ADMM that solves the denoising-like subproblem by subtracting the predicted residual of the denoising neural network. Instead of establishing the assumption for the denoiser, we truncate the residual with a variable that tends to zero. In this way, the iterative sequence of the proposed algorithm can strictly converge to a fixed point. This truncated residual based plug-and-play ADMM algorithm is called TRPA . Moreover, to allow the denoiser to deal with the continuous noise level, we design a continuous conditional instance normalization (CCIN) layer. With the truncated residual and the powerful neural network with CCIN, the TRPA has strict convergence property as well as great image restoration ability. Qualitative and quantitative results show that our proposed TRPA is comparable with state-of-the-art methods. It is worth noticing that TRPA as a plug-and-play method is comparable with the end-to-end model at the leaderboard of fastMRI challenge.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
智慧莎完成签到,获得积分10
刚刚
刚刚
司空铭发布了新的文献求助10
3秒前
11完成签到 ,获得积分10
5秒前
7秒前
工藤新一完成签到 ,获得积分10
8秒前
9秒前
xiao完成签到,获得积分10
11秒前
科研达人发布了新的文献求助10
12秒前
14秒前
嘉人发布了新的文献求助10
14秒前
李多鱼发布了新的文献求助10
14秒前
李健应助qyang采纳,获得10
16秒前
16秒前
司空铭完成签到,获得积分10
16秒前
传奇3应助善良的冥茗采纳,获得10
17秒前
我是老大应助QixuGuo采纳,获得10
17秒前
zz发布了新的文献求助10
17秒前
Liuzirong发布了新的文献求助10
20秒前
默默洋葱发布了新的文献求助50
21秒前
认真柜子完成签到,获得积分20
22秒前
23秒前
Owen应助王盼盼采纳,获得10
23秒前
23秒前
lzm发布了新的文献求助10
23秒前
李多鱼完成签到,获得积分20
24秒前
25秒前
25秒前
含蓄的鲜花完成签到,获得积分10
26秒前
26秒前
科研达人发布了新的文献求助30
29秒前
qyang发布了新的文献求助10
29秒前
30秒前
Alioth发布了新的文献求助10
30秒前
31秒前
34秒前
36秒前
39秒前
耿大海完成签到,获得积分10
41秒前
43秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993032
求助须知:如何正确求助?哪些是违规求助? 3533888
关于积分的说明 11264048
捐赠科研通 3273597
什么是DOI,文献DOI怎么找? 1806129
邀请新用户注册赠送积分活动 882974
科研通“疑难数据库(出版商)”最低求助积分说明 809629