对映体
化学
圆二色性
对接(动物)
自动停靠
氢键
立体化学
分子
有机化学
生物化学
医学
基因
护理部
生物信息学
作者
Ran Chen,Rujian He,Dong Guo,Zhifeng Zhang,Wei-Guang Zhang,Jun Fan
摘要
In this work, multi-spectroscopic and molecular docking methods have been conducted in the investigation of enantioselective interactions between diclazuril enantiomers and human/bovine serum albumins (HSA/BSA). The binding constants between serum albumins (SAs) and diclazuril enantiomers revealed that SAs exhibited stronger binding affinity for (R)-diclazuril than (S)-enantiomer. In addition, the fluorescence quenching of SAs induced by diclazuril enantiomers was ascribed to static quenching mechanism, in which hydrogen bonds and Van der Waals forces were the main interactions. According to the thermodynamic study, binding of diclazuril enantiomers and SAs was an exothermic process driven by enthalpy change. Then, circular dichroism spectroscopy of SAs with diclazuril enantiomers revealed that the SAs conformation had changed in the presence of diclazuril. Moreover, molecular docking technology was applied in exploration of interactions between SAs and diclazuril enantiomers. The docking energy between SAs and (R)-diclazuril was larger than (S)-diclazuril, which indicated that the affinity of SAs with (R)-diclazuril was stronger than (S)-enantiomer. This work may provide valuable information for explaining differences in pharmacokinetics and residue elimination of diclazuril enantiomers in living organisms.
科研通智能强力驱动
Strongly Powered by AbleSci AI