[PM2.5 Source Apportionment Based on a Variety of New Receptor Models].

非负矩阵 生物质燃烧 源模型 微粒 煤燃烧产物 气溶胶 多线性映射 环境科学 分摊 化学 环境化学 燃烧 大气科学 数学 气象学 物理 计算物理学 特征向量 有机化学 对称矩阵 量子力学 政治学 法学 纯数学
作者
Zhenyu Wang,Yongbin Li,Guo Ling,Zhi-Qiang Song,Yanling Xu,Feng Wang,Weiqing Liang,Guoliang Shi,Yinchang Feng
出处
期刊:PubMed 卷期号:43 (2): 608-618
标识
DOI:10.13227/j.hjkx.202106199
摘要

In order to understand the applicability of various new receptor models, four receptor models, including the positive matrix factorization/multilinear engine 2-species ratio (PMF/ME2-SR), partial target transformation-positive matrix factorization (PTT-PMF), positive matrix factorization (PMF), and chemical mass balance (CMB), were used to analyze and verify the atmospheric fine particulate matter (PM2.5) data of a typical city in northern China. It was found that coal combustion (25%-26%), dust (19%-21%), secondary nitrate (17%-19%), secondary sulfate (16%), vehicle emissions (13%-15%), biomass burning (4%-7%), and steel (1%-2%) had a contribution to PM2.5. By comparing the source profiles and source contributions obtained by different models and calculating the coefficient of differences (CD) and average absolute error (AAE) of each source, we found that although the source apportionment results of the four models were in good agreement (the average CD value was between 0.6 and 0.7), there were still slight differences in the identification of some components in each source. Compared with the traditional model (PMF), the PMF/ME2-SR model can better identify sources with similar source profile characteristics, which is due to the component ratios of sources that are introduced. For example, the CD and AAE of dust sources were 15% and 54% lower than those of PMF, respectively. The PTT-PMF model takes the measured primary source profiles and virtual secondary source profiles as a constraint target, and the calculated CD and AAE of secondary sulfate were 0.25 and 17%, respectively, which were 55% and 23% lower than PMF. The PTT-PMF model can obtain more "pure" secondary sources and identify the pollution sources that are not identified by other models, which has more advantages in the refined identification of sources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
量子星尘发布了新的文献求助10
1秒前
even发布了新的文献求助10
1秒前
1秒前
小众完成签到,获得积分10
1秒前
小李完成签到,获得积分10
1秒前
飞槐发布了新的文献求助10
2秒前
小小雪发布了新的文献求助10
2秒前
2秒前
彭于晏应助主手的麻衣采纳,获得10
3秒前
CodeCraft应助喜悦绿旋采纳,获得10
3秒前
chixueqi发布了新的文献求助10
3秒前
kulo发布了新的文献求助10
3秒前
SciGPT应助ymt采纳,获得10
4秒前
skyangar发布了新的文献求助10
4秒前
可爱的函函应助福路采纳,获得10
4秒前
量子星尘发布了新的文献求助10
4秒前
默默的芙完成签到,获得积分10
5秒前
石头发布了新的文献求助10
5秒前
所所应助lmy采纳,获得10
5秒前
开朗冬灵完成签到 ,获得积分20
6秒前
宇月幸成发布了新的文献求助10
6秒前
昼夜本色发布了新的文献求助10
6秒前
majingwei发布了新的文献求助10
6秒前
6秒前
7秒前
xixi发布了新的文献求助10
8秒前
DouBo完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
10秒前
DouBo发布了新的文献求助10
10秒前
10秒前
小蘑菇应助飞槐采纳,获得10
10秒前
guoguo完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851