[PM2.5 Source Apportionment Based on a Variety of New Receptor Models].

非负矩阵 生物质燃烧 源模型 微粒 煤燃烧产物 气溶胶 多线性映射 环境科学 分摊 化学 环境化学 燃烧 大气科学 数学 气象学 物理 计算物理学 特征向量 有机化学 对称矩阵 量子力学 政治学 法学 纯数学
作者
Zhenyu Wang,Yongbin Li,Guo Ling,Zhi-Qiang Song,Yanling Xu,Feng Wang,Weiqing Liang,Guoliang Shi,Yinchang Feng
出处
期刊:PubMed 卷期号:43 (2): 608-618
标识
DOI:10.13227/j.hjkx.202106199
摘要

In order to understand the applicability of various new receptor models, four receptor models, including the positive matrix factorization/multilinear engine 2-species ratio (PMF/ME2-SR), partial target transformation-positive matrix factorization (PTT-PMF), positive matrix factorization (PMF), and chemical mass balance (CMB), were used to analyze and verify the atmospheric fine particulate matter (PM2.5) data of a typical city in northern China. It was found that coal combustion (25%-26%), dust (19%-21%), secondary nitrate (17%-19%), secondary sulfate (16%), vehicle emissions (13%-15%), biomass burning (4%-7%), and steel (1%-2%) had a contribution to PM2.5. By comparing the source profiles and source contributions obtained by different models and calculating the coefficient of differences (CD) and average absolute error (AAE) of each source, we found that although the source apportionment results of the four models were in good agreement (the average CD value was between 0.6 and 0.7), there were still slight differences in the identification of some components in each source. Compared with the traditional model (PMF), the PMF/ME2-SR model can better identify sources with similar source profile characteristics, which is due to the component ratios of sources that are introduced. For example, the CD and AAE of dust sources were 15% and 54% lower than those of PMF, respectively. The PTT-PMF model takes the measured primary source profiles and virtual secondary source profiles as a constraint target, and the calculated CD and AAE of secondary sulfate were 0.25 and 17%, respectively, which were 55% and 23% lower than PMF. The PTT-PMF model can obtain more "pure" secondary sources and identify the pollution sources that are not identified by other models, which has more advantages in the refined identification of sources.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LTW发布了新的文献求助10
刚刚
刚刚
1秒前
宇文数学发布了新的文献求助10
1秒前
hkh发布了新的文献求助10
1秒前
溫蒂应助Laura采纳,获得30
2秒前
123完成签到,获得积分10
2秒前
bingo驳回了赘婿应助
2秒前
He完成签到,获得积分10
3秒前
Conccuc完成签到,获得积分10
3秒前
4秒前
JXL完成签到,获得积分10
4秒前
GLL发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
芳菲依旧应助图南采纳,获得30
7秒前
7秒前
科研通AI2S应助文静的绿真采纳,获得10
8秒前
但小安完成签到,获得积分20
8秒前
大模型应助chu采纳,获得10
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
dd123完成签到,获得积分10
9秒前
积极向上发布了新的文献求助10
9秒前
金锐完成签到,获得积分20
9秒前
斯文败类应助曾经的贞采纳,获得10
9秒前
cara完成签到,获得积分10
9秒前
Owen应助arniu2008采纳,获得10
10秒前
bbrfu完成签到,获得积分20
10秒前
杰果完成签到,获得积分10
10秒前
kmessiy完成签到 ,获得积分10
10秒前
杨涵发布了新的文献求助10
10秒前
hkh完成签到,获得积分10
11秒前
小巧风华完成签到 ,获得积分10
11秒前
11秒前
郭1990发布了新的文献求助10
11秒前
脑洞疼应助独特的幼菱采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624261
求助须知:如何正确求助?哪些是违规求助? 4710125
关于积分的说明 14949526
捐赠科研通 4778199
什么是DOI,文献DOI怎么找? 2553176
邀请新用户注册赠送积分活动 1515094
关于科研通互助平台的介绍 1475490