已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Brain gray matter nuclei segmentation on quantitative susceptibility mapping using dual-branch convolutional neural network

定量磁化率图 卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 残余物 人工神经网络 磁共振成像 算法 医学 放射科
作者
Chao Chai,Pengchong Qiao,Bin Zhao,Huiying Wang,Guohua Li,Hong Wu,Wen Shen,Chen Cao,Xinchen Ye,Zhiyang Liu,Shuang Xia
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:125: 102255-102255 被引量:5
标识
DOI:10.1016/j.artmed.2022.102255
摘要

Abnormal iron accumulation in the brain subcortical nuclei has been reported to be correlated to various neurodegenerative diseases, which can be measured through the magnetic susceptibility from the quantitative susceptibility mapping (QSM). To quantitatively measure the magnetic susceptibility, the nuclei should be accurately segmented, which is a tedious task for clinicians. In this paper, we proposed a dual-branch residual-structured U-Net (DB-ResUNet) based on 3D convolutional neural network (CNN) to automatically segment such brain gray matter nuclei. Due to memory limit, 3D-CNN-based methods typically adopted image patches, instead of the whole volumetric image, which, however, ignored the spatial contextual information of the neighboring patches, and therefore led to the accuracy loss. To better tradeoff segmentation accuracy and the memory efficiency, the proposed DB-ResUNet incorporated patches with different resolutions. By jointly using QSM and 3D T1 weighted imaging (T1WI) as inputs, the proposed method was able to achieve better segmentation accuracy over its single-branch counterpart, as well as the conventional atlas-based method and the classical 3D CNN structures. The susceptibility values and the volumes were also measured, which indicated that the measurements from the proposed DB-ResUNet was able to present high correlation with values from the manually annotated regions of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
完美世界应助可研小冲采纳,获得10
1秒前
浮游应助超级万声采纳,获得10
1秒前
2秒前
CipherSage应助胜似闲庭信步采纳,获得10
2秒前
7秒前
欢呼的忘幽完成签到,获得积分10
8秒前
Hello应助HighFeng_Lei采纳,获得10
9秒前
12秒前
ok完成签到,获得积分10
12秒前
MrTStar完成签到 ,获得积分10
13秒前
13秒前
13秒前
14秒前
15秒前
浮游应助科研通管家采纳,获得10
15秒前
深情安青应助科研通管家采纳,获得10
15秒前
隐形曼青应助科研通管家采纳,获得10
15秒前
orixero应助科研通管家采纳,获得10
15秒前
cherrychou完成签到,获得积分10
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
16秒前
思源应助科研通管家采纳,获得10
16秒前
浮浮世世应助科研通管家采纳,获得30
16秒前
打打应助科研通管家采纳,获得10
17秒前
852应助科研通管家采纳,获得10
17秒前
烟花应助科研通管家采纳,获得10
17秒前
浮游应助科研通管家采纳,获得10
17秒前
搜集达人应助科研通管家采纳,获得10
17秒前
浮浮世世应助科研通管家采纳,获得30
17秒前
17秒前
Ava应助科研通管家采纳,获得10
17秒前
17秒前
17秒前
风中问晴发布了新的文献求助10
18秒前
迅速泽洋发布了新的文献求助10
18秒前
19秒前
CXS发布了新的文献求助10
19秒前
21秒前
秀丽的短靴完成签到,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5197265
求助须知:如何正确求助?哪些是违规求助? 4378603
关于积分的说明 13636598
捐赠科研通 4234374
什么是DOI,文献DOI怎么找? 2322660
邀请新用户注册赠送积分活动 1320792
关于科研通互助平台的介绍 1271422