Brain gray matter nuclei segmentation on quantitative susceptibility mapping using dual-branch convolutional neural network

定量磁化率图 卷积神经网络 计算机科学 人工智能 分割 模式识别(心理学) 残余物 人工神经网络 磁共振成像 算法 医学 放射科
作者
Chao Chai,Pengchong Qiao,Bin Zhao,Huiying Wang,Guohua Li,Hong Wu,Wen Shen,Chen Cao,Xinchen Ye,Zhiyang Liu,Shuang Xia
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:125: 102255-102255 被引量:5
标识
DOI:10.1016/j.artmed.2022.102255
摘要

Abnormal iron accumulation in the brain subcortical nuclei has been reported to be correlated to various neurodegenerative diseases, which can be measured through the magnetic susceptibility from the quantitative susceptibility mapping (QSM). To quantitatively measure the magnetic susceptibility, the nuclei should be accurately segmented, which is a tedious task for clinicians. In this paper, we proposed a dual-branch residual-structured U-Net (DB-ResUNet) based on 3D convolutional neural network (CNN) to automatically segment such brain gray matter nuclei. Due to memory limit, 3D-CNN-based methods typically adopted image patches, instead of the whole volumetric image, which, however, ignored the spatial contextual information of the neighboring patches, and therefore led to the accuracy loss. To better tradeoff segmentation accuracy and the memory efficiency, the proposed DB-ResUNet incorporated patches with different resolutions. By jointly using QSM and 3D T1 weighted imaging (T1WI) as inputs, the proposed method was able to achieve better segmentation accuracy over its single-branch counterpart, as well as the conventional atlas-based method and the classical 3D CNN structures. The susceptibility values and the volumes were also measured, which indicated that the measurements from the proposed DB-ResUNet was able to present high correlation with values from the manually annotated regions of interest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yu发布了新的文献求助10
1秒前
jason完成签到,获得积分10
1秒前
nan完成签到,获得积分10
1秒前
酷波er应助Aaaaaa瘾采纳,获得10
2秒前
40873完成签到 ,获得积分10
2秒前
好久不见发布了新的文献求助20
4秒前
4秒前
凉拌冰阔落完成签到,获得积分10
4秒前
BLDYT完成签到,获得积分20
5秒前
7秒前
Owen应助明亮的冰颜采纳,获得10
7秒前
ycccc99发布了新的文献求助10
8秒前
9秒前
科目三应助目土土采纳,获得10
9秒前
科研通AI2S应助dentistx采纳,获得10
11秒前
123完成签到,获得积分10
12秒前
YQ发布了新的文献求助10
12秒前
哈哈哈完成签到,获得积分20
13秒前
一朵海棠花完成签到,获得积分10
14秒前
Bismarck发布了新的文献求助10
14秒前
小二郎应助孙梦涵采纳,获得10
14秒前
肉肉完成签到,获得积分10
15秒前
manman发布了新的文献求助20
15秒前
15秒前
温暖乌龟发布了新的文献求助10
15秒前
任性觅翠完成签到,获得积分10
16秒前
小白完成签到,获得积分10
16秒前
知趣完成签到,获得积分10
17秒前
18秒前
18秒前
18秒前
18秒前
烟花应助王企鹅采纳,获得10
19秒前
19秒前
靓丽的胜完成签到,获得积分10
20秒前
搜集达人应助科研通管家采纳,获得10
21秒前
NexusExplorer应助科研通管家采纳,获得10
21秒前
ding应助科研通管家采纳,获得10
21秒前
在水一方应助科研通管家采纳,获得10
21秒前
Cris完成签到,获得积分10
21秒前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138255
求助须知:如何正确求助?哪些是违规求助? 2789256
关于积分的说明 7790627
捐赠科研通 2445551
什么是DOI,文献DOI怎么找? 1300583
科研通“疑难数据库(出版商)”最低求助积分说明 625969
版权声明 601053