平均绝对百分比误差
均方误差
统计
循环神经网络
能源需求
平均绝对误差
计量经济学
数学
人工神经网络
计算机科学
人工智能
经济
自然资源经济学
作者
Shobhit Chaturvedi,E. Rajasekar,Sukumar Natarajan,Nick McCullen
出处
期刊:Energy Policy
[Elsevier]
日期:2022-09-01
卷期号:168: 113097-113097
被引量:62
标识
DOI:10.1016/j.enpol.2022.113097
摘要
Selecting a suitable energy demand forecasting method is challenging due to the complex interplay of long-term trends, short-term seasonalities, and uncertainties. This paper compares four time-series models performance to predict total and peak monthly energy demand in India. Indian's Central Energy Authority's (CEA) existing trend-based model is used as a baseline against (i) Seasonal Auto-Regressive Integrated Moving Average (SARIMA), (ii) Long Short Term Memory Recurrent Neural Network (LSTM RNN) and (iii) Facebook (Fb) Prophet models. Using 108 months of training data to predict 24 months of unseen data, the CEA model performs well in predicting monthly total energy demand with low root-mean square error (RMSE 4.23 GWh) and mean absolute percentage error (MAPE, 3.4%), but significantly under predicts monthly peak energy demand (RMSE 13.31 GW, MAPE 7.2%). In contrast, Fb Prophet performs well for monthly total (RMSE 4.23 GWh, MAPE 3.3%) and peak demand (RMSE 6.51 GW, MAPE 3.01%). SARIMA and LSTM RNN have higher prediction errors than CEA and Fb Prophet. Thus, Fb Prophet is selected to develop future energy forecasts from 2019 to 2024, suggesting that India's annual total and peak energy demand will likely increase at an annual growth rate of 3.9% and 4.5%, respectively.
科研通智能强力驱动
Strongly Powered by AbleSci AI