A deep learning-based system for survival benefit prediction of tyrosine kinase inhibitors and immune checkpoint inhibitors in stage IV non-small cell lung cancer patients: A multicenter, prognostic study

医学 肺癌 阶段(地层学) 肿瘤科 内科学 放射科 生物 古生物学
作者
Kan Deng,Lu Wang,Yuchan Liu,Xin Li,Qiuyang Hou,Mulan Cao,Nathan Ng,Huan Wang,Huanhuan Chen,Kristen W. Yeom,Mingfang Zhao,Ning Wu,Peng Gao,Jingyun Shi,Zaiyi Liu,Weimin Liu,Jie Tian,Jiangdian Song
出处
期刊:EClinicalMedicine [Elsevier BV]
卷期号:51: 101541-101541 被引量:6
标识
DOI:10.1016/j.eclinm.2022.101541
摘要

For clinical decision making, it is crucial to identify patients with stage IV non-small cell lung cancer (NSCLC) who may benefit from tyrosine kinase inhibitors (TKIs) and immune checkpoint inhibitors (ICIs). In this study, a deep learning-based system was designed and validated using pre-therapy computed tomography (CT) images to predict the survival benefits of EGFR-TKIs and ICIs in stage IV NSCLC patients.This retrospective study collected data from 570 patients with stage IV EGFR-mutant NSCLC treated with EGFR-TKIs at five institutions between 2010 and 2021 (data of 314 patients were from a previously registered study), and 129 patients with stage IV NSCLC treated with ICIs at three institutions between 2017 and 2021 to build the ICI test dataset. Five-fold cross-validation was applied to divide the EGFR-TKI-treated patients from four institutions into training and internal validation datasets randomly in a ratio of 80%:20%, and the data from another institution was used as an external test dataset. An EfficientNetV2-based survival benefit prognosis (ESBP) system was developed with pre-therapy CT images as the input and the probability score as the output to identify which patients would receive additional survival benefit longer than the median PFS. Its prognostic performance was validated on the ICI test dataset. For diagnosing which patient would receive additional survival benefit, the accuracy of ESBP was compared with the estimations of three radiologists and three oncologists with varying degrees of expertise (two, five, and ten years). Improvements in the clinicians' diagnostic accuracy with ESBP assistance were then quantified.ESBP achieved positive predictive values of 80·40%, 75·40%, and 77·43% for additional EGFR-TKI survival benefit prediction using the probability score of 0·2 as the threshold on the training, internal validation, and external test datasets, respectively. The higher ESBP score (>0·2) indicated a better prognosis for progression-free survival (hazard ratio: 0·36, 95% CI: 0·19-0·68, p<0·0001) in patients on the external test dataset. Patients with scores >0·2 in the ICI test dataset also showed better survival benefit (hazard ratio: 0·33, 95% CI: 0·18-0·55, p<0·0001). This suggests the potential of ESBP to identify the two subgroups of benefiting patients by decoding the commonalities from pre-therapy CT images (stage IV EGFR-mutant NSCLC patients receiving additional survival benefit from EGFR-TKIs and stage IV NSCLC patients receiving additional survival benefit from ICIs). ESBP assistance improved the diagnostic accuracy of the clinicians with two years of experience from 47·91% to 66·32%, and the clinicians with five years of experience from 53·12% to 61·41%.This study developed and externally validated a preoperative CT image-based deep learning model to predict the survival benefits of EGFR-TKI and ICI therapies in stage IV NSCLC patients, which will facilitate optimized and individualized treatment strategies.This study received funding from the National Natural Science Foundation of China (82001904, 81930053, and 62027901), and Key-Area Research and Development Program of Guangdong Province (2021B0101420005).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
na'na发布了新的文献求助30
1秒前
1秒前
希望天下0贩的0应助mike采纳,获得10
2秒前
迅速向日葵应助Skyyeats采纳,获得10
2秒前
冷艳的纸鹤完成签到,获得积分10
3秒前
3秒前
4秒前
5秒前
鲁滨逊发布了新的文献求助10
5秒前
白宇完成签到,获得积分10
5秒前
5秒前
CodeCraft应助林夏采纳,获得10
5秒前
6秒前
6秒前
6秒前
6秒前
sunflower完成签到,获得积分0
7秒前
NexusExplorer应助Tuniverse_采纳,获得10
7秒前
joicelee199完成签到,获得积分10
7秒前
ChinaNiu发布了新的文献求助10
8秒前
Akim应助fff采纳,获得10
9秒前
小天发布了新的文献求助10
10秒前
10秒前
10秒前
As完成签到,获得积分20
10秒前
小黎发布了新的文献求助10
10秒前
夕诙发布了新的文献求助10
11秒前
止戈为武完成签到,获得积分10
11秒前
11秒前
再夕予发布了新的文献求助10
11秒前
平常的羊发布了新的文献求助10
11秒前
Kelly完成签到,获得积分10
11秒前
jinjun发布了新的文献求助10
12秒前
12秒前
zhuxx完成签到,获得积分20
13秒前
乐乐应助达古冰川采纳,获得10
13秒前
13秒前
青山渐青完成签到,获得积分10
13秒前
14秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3772271
求助须知:如何正确求助?哪些是违规求助? 3317649
关于积分的说明 10186966
捐赠科研通 3032802
什么是DOI,文献DOI怎么找? 1663732
邀请新用户注册赠送积分活动 795908
科研通“疑难数据库(出版商)”最低求助积分说明 757100