计算
计算机科学
卷积(计算机科学)
相(物质)
航程(航空)
可分离空间
点(几何)
算法
波形
比例(比率)
回归
模式识别(心理学)
数据挖掘
人工智能
人工神经网络
数学
统计
工程类
几何学
数学分析
电信
雷达
化学
物理
有机化学
量子力学
航空航天工程
出处
期刊:Seismological Research Letters
[Seismological Society]
日期:2022-06-22
卷期号:93 (5): 2834-2846
摘要
Abstract We here present one lightweight phase picking network (LPPN) to pick P/S phases from continuous seismic recordings. It first classifies the phase type for a segment of waveform, and then performs regression to get accurate phase arrival time. The network is optimized using deep separable convolution to reduce the number of trainable parameters and improve its computation efficiency. Experiments using the STanford EArthquake Dataset (STEAD) show that the precision of LPPN can reach 95.2% and 83.7% with the recalls 94.4% and 84.7% for P and S phases, respectively. The classification–regression approach shows comparable performance to traditional point-to-point methods with lower computation cost. LPPN can be configured to have different model size and run on a wide range of devices. It is open-source and can support phase picking for large-scale dataset or in other speed sensitive scenarios.
科研通智能强力驱动
Strongly Powered by AbleSci AI