亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Species distribution modeling and machine learning in assessing the potential distribution of freshwater zooplankton in Northern Italy

浮游动物 物种分布 栖息地 生态学 空间分布 机器学习 生物 计算机科学 统计 数学
作者
Nicolò Bellin,Giacomo Tesi,Nicola Marchesani,Valeria Rossi
出处
期刊:Ecological Informatics [Elsevier]
卷期号:69: 101682-101682 被引量:12
标识
DOI:10.1016/j.ecoinf.2022.101682
摘要

Species distribution models (SDM's) are powerful tools used to describe species suitable habitats and spatial occurrences and many statistical methods and algorithms are available to model the spatial distribution of a target species. Here we explore a species distribution model framework combined with machine learning algorithms to describe the distribution of two freshwater zooplankton species Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepods) in a system of 283 shallow and ephemeral freshwater habitats in the Northern Italian Appennines. For each species, we model the habitat suitability by comparing one regression-based model, one generalized linear model (GLM) and two machine learning algorithms: random forest (RF) and artificial neural network (ANN) with one hidden layer. We used a total of 27 predictor variables. The modeling framework was used considering a scenario of future climate change in order to evaluate potential shifts in spatial distribution of the zooplankton species. For both species, the supervised machine learning algorthn (ANN) produced the highest mean values for all the performance metrics. For D. longispina and E. serrulatus, the two most important variables ranked by the shap analysis and global sensitivity and uncertainty analysis (GSUA) were temperature seasonality and precipitation of the warmest quarter. Both species, in a future climatic change scenario, are expected to shift their distribution mainly toward lower northern altitudes with an overall expansion of 7% with respect to the past/present climatic conditions. However, the spatial expansion of D. longispina and E. serrulatus was qualitatively different. In agricultural and natural areas, the expansion of E. serrulatus was greater than that of D. longispina but, in natural areas, the expansion of E. serrulatus was counterbalanced by a greater spatial contraction than that of D. longispina. As hypothesized, direct and indirect anthropogenic pressures may affect the predicted potential shift and expansion of the zooplankton species.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
jinyue完成签到 ,获得积分10
6秒前
7秒前
utopia发布了新的文献求助10
10秒前
jachin完成签到 ,获得积分10
10秒前
14秒前
21秒前
Yu发布了新的文献求助10
27秒前
28秒前
28秒前
28秒前
英姑应助科研通管家采纳,获得10
28秒前
28秒前
28秒前
慕青应助科研通管家采纳,获得10
29秒前
CipherSage应助科研通管家采纳,获得10
29秒前
amengptsd完成签到,获得积分10
37秒前
39秒前
天天快乐应助Yu采纳,获得10
40秒前
40秒前
哈哈哈发布了新的文献求助10
42秒前
45秒前
神勇嫣完成签到 ,获得积分10
46秒前
48秒前
51秒前
lixiangyi1发布了新的文献求助10
57秒前
1分钟前
轨迹应助Shuo Yang采纳,获得30
1分钟前
1分钟前
AX完成签到,获得积分10
1分钟前
科研通AI6.1应助炙热成仁采纳,获得10
1分钟前
1分钟前
1分钟前
内秀发布了新的文献求助10
1分钟前
111完成签到 ,获得积分20
2分钟前
太阳当空照完成签到 ,获得积分10
2分钟前
内秀完成签到,获得积分10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763854
求助须知:如何正确求助?哪些是违规求助? 5544969
关于积分的说明 15405553
捐赠科研通 4899419
什么是DOI,文献DOI怎么找? 2635539
邀请新用户注册赠送积分活动 1583703
关于科研通互助平台的介绍 1538795