Paddy moisture on-line detection based on ensemble preprocessing and modeling for combine harvester

稳健性(进化) 预处理器 残余物 重复性 联合收割机 人工智能 数学 计算机科学 工程类 统计 算法 机械工程 生物化学 化学 基因
作者
Jinshan Yan,Hao Tian,Shuai Wang,Zhipeng Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107050-107050 被引量:3
标识
DOI:10.1016/j.compag.2022.107050
摘要

The on-line detection of paddy moisture content (MC) during harvest has gained increasing interest recently due to its unique role for the control of combine harvester, yield evaluation and post-harvest grain handling operations. However, it is very difficult to achieve good performance under the complex and changeable situation during field harvest. In this study, paddy varieties, paddy flow, feeding types and algorithms were comprehensively considered to optimize the MC detection method. Firstly, an on-line near-infrared sensing system supplemented for grain tank of combine harvester was designed, and spectra were collected under the most common and essential detecting conditions, which including paddy varieties, feeding types and straw effect. Then, ensemble preprocessing, parameter optimization and accuracy test were performed. The best result of all conditions was extreme learning machine (ELM) coupled with the ensemble preprocessing of orthogonal signal correction with savitzky-golay (OSC + SG). The root mean standard error of prediction (RMSEPV) of this method after validation on unknown sample was as low as 1.0791% w.b, and the residual predictive deviation (RPDV) was higher than 3.5646. Stability tests were carried out under conditions of varying feeding types and straw quantities. The results showed that ELM had enough robustness to cope with complex detecting conditions and maintain proper accuracy as the mean value of repeatability, conditions and reproducibility were calculated as 0.0213%, 0.4471% and 0.6868% w.b, respectively. Despite the preliminary feasibility for on-line MC measurement of paddy, the on-line near-infrared sensing system needs to be verified on combine harvester during harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星完成签到,获得积分10
2秒前
你是谁发布了新的文献求助10
3秒前
睡不着发布了新的文献求助10
3秒前
inging发布了新的文献求助10
3秒前
褚洙完成签到,获得积分10
3秒前
sjsjjj完成签到,获得积分10
3秒前
洋山芋完成签到,获得积分10
4秒前
乐乐应助Lyue采纳,获得10
5秒前
Owen应助ye采纳,获得10
6秒前
劲秉应助简单灵凡采纳,获得10
7秒前
你是谁完成签到,获得积分10
8秒前
qqqqq完成签到,获得积分10
9秒前
Shyee完成签到,获得积分10
12秒前
林深发布了新的文献求助10
12秒前
16秒前
俊逸如风完成签到 ,获得积分10
16秒前
王旭东完成签到 ,获得积分10
17秒前
CipherSage应助火星上的盼秋采纳,获得10
17秒前
17秒前
传奇3应助科研通管家采纳,获得10
17秒前
xjcy应助科研通管家采纳,获得10
17秒前
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
xjcy应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得200
18秒前
xjcy应助科研通管家采纳,获得10
18秒前
xjcy应助科研通管家采纳,获得10
18秒前
xfwz522应助科研通管家采纳,获得10
18秒前
xjcy应助科研通管家采纳,获得10
18秒前
hzxy_lyt应助科研通管家采纳,获得10
18秒前
研友_VZG7GZ应助科研通管家采纳,获得10
18秒前
shinysparrow应助科研通管家采纳,获得200
18秒前
xjcy应助科研通管家采纳,获得10
19秒前
隐形曼青应助科研通管家采纳,获得10
19秒前
领导范儿应助科研通管家采纳,获得10
19秒前
xfwz522应助科研通管家采纳,获得10
19秒前
19秒前
知识海洋里的淡水鱼完成签到 ,获得积分10
20秒前
烟花应助weutyrfgryqwfer采纳,获得10
22秒前
Lyue发布了新的文献求助10
22秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292030
求助须知:如何正确求助?哪些是违规求助? 2928465
关于积分的说明 8436992
捐赠科研通 2600443
什么是DOI,文献DOI怎么找? 1419058
科研通“疑难数据库(出版商)”最低求助积分说明 660216
邀请新用户注册赠送积分活动 642865