Paddy moisture on-line detection based on ensemble preprocessing and modeling for combine harvester

稳健性(进化) 预处理器 残余物 重复性 联合收割机 人工智能 数学 计算机科学 工程类 统计 算法 机械工程 生物化学 化学 基因
作者
Jinshan Yan,Hao Tian,Shuai Wang,Zhipeng Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:198: 107050-107050 被引量:3
标识
DOI:10.1016/j.compag.2022.107050
摘要

The on-line detection of paddy moisture content (MC) during harvest has gained increasing interest recently due to its unique role for the control of combine harvester, yield evaluation and post-harvest grain handling operations. However, it is very difficult to achieve good performance under the complex and changeable situation during field harvest. In this study, paddy varieties, paddy flow, feeding types and algorithms were comprehensively considered to optimize the MC detection method. Firstly, an on-line near-infrared sensing system supplemented for grain tank of combine harvester was designed, and spectra were collected under the most common and essential detecting conditions, which including paddy varieties, feeding types and straw effect. Then, ensemble preprocessing, parameter optimization and accuracy test were performed. The best result of all conditions was extreme learning machine (ELM) coupled with the ensemble preprocessing of orthogonal signal correction with savitzky-golay (OSC + SG). The root mean standard error of prediction (RMSEPV) of this method after validation on unknown sample was as low as 1.0791% w.b, and the residual predictive deviation (RPDV) was higher than 3.5646. Stability tests were carried out under conditions of varying feeding types and straw quantities. The results showed that ELM had enough robustness to cope with complex detecting conditions and maintain proper accuracy as the mean value of repeatability, conditions and reproducibility were calculated as 0.0213%, 0.4471% and 0.6868% w.b, respectively. Despite the preliminary feasibility for on-line MC measurement of paddy, the on-line near-infrared sensing system needs to be verified on combine harvester during harvest.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白枫完成签到 ,获得积分10
1秒前
xxxxqqqqaaa完成签到,获得积分10
2秒前
xyzlancet完成签到,获得积分10
3秒前
韦远侵完成签到,获得积分10
5秒前
MTF完成签到 ,获得积分10
7秒前
番茄炒西红柿完成签到,获得积分10
8秒前
egoistMM完成签到,获得积分10
9秒前
cxl完成签到,获得积分10
10秒前
在水一方应助科研通管家采纳,获得10
11秒前
香蕉诗蕊应助科研通管家采纳,获得20
11秒前
lylyspeechless完成签到,获得积分10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
林晚停应助科研通管家采纳,获得10
11秒前
妩媚的海应助科研通管家采纳,获得50
11秒前
香蕉诗蕊应助科研通管家采纳,获得10
11秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
小蜗爬爬应助科研通管家采纳,获得10
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
彭于晏应助科研通管家采纳,获得10
11秒前
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
在水一方应助科研通管家采纳,获得10
11秒前
Zx_1993应助科研通管家采纳,获得10
11秒前
Frank完成签到 ,获得积分10
11秒前
无极微光应助科研通管家采纳,获得20
11秒前
Lucas应助科研通管家采纳,获得10
12秒前
无花果应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
香蕉诗蕊应助科研通管家采纳,获得10
12秒前
bkagyin应助科研通管家采纳,获得10
12秒前
英俊的铭应助科研通管家采纳,获得10
12秒前
李1应助科研通管家采纳,获得10
12秒前
斯文败类应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得30
12秒前
12秒前
CipherSage应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539314
求助须知:如何正确求助?哪些是违规求助? 4626076
关于积分的说明 14597627
捐赠科研通 4566895
什么是DOI,文献DOI怎么找? 2503687
邀请新用户注册赠送积分活动 1481599
关于科研通互助平台的介绍 1453173