Paddy moisture on-line detection based on ensemble preprocessing and modeling for combine harvester

稳健性(进化) 预处理器 残余物 重复性 联合收割机 人工智能 数学 计算机科学 工程类 统计 算法 机械工程 生物化学 化学 基因
作者
Jinshan Yan,Hao Tian,Shuai Wang,Zhipeng Wang,Huirong Xu
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:198: 107050-107050 被引量:3
标识
DOI:10.1016/j.compag.2022.107050
摘要

The on-line detection of paddy moisture content (MC) during harvest has gained increasing interest recently due to its unique role for the control of combine harvester, yield evaluation and post-harvest grain handling operations. However, it is very difficult to achieve good performance under the complex and changeable situation during field harvest. In this study, paddy varieties, paddy flow, feeding types and algorithms were comprehensively considered to optimize the MC detection method. Firstly, an on-line near-infrared sensing system supplemented for grain tank of combine harvester was designed, and spectra were collected under the most common and essential detecting conditions, which including paddy varieties, feeding types and straw effect. Then, ensemble preprocessing, parameter optimization and accuracy test were performed. The best result of all conditions was extreme learning machine (ELM) coupled with the ensemble preprocessing of orthogonal signal correction with savitzky-golay (OSC + SG). The root mean standard error of prediction (RMSEPV) of this method after validation on unknown sample was as low as 1.0791% w.b, and the residual predictive deviation (RPDV) was higher than 3.5646. Stability tests were carried out under conditions of varying feeding types and straw quantities. The results showed that ELM had enough robustness to cope with complex detecting conditions and maintain proper accuracy as the mean value of repeatability, conditions and reproducibility were calculated as 0.0213%, 0.4471% and 0.6868% w.b, respectively. Despite the preliminary feasibility for on-line MC measurement of paddy, the on-line near-infrared sensing system needs to be verified on combine harvester during harvest.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小于完成签到,获得积分10
1秒前
zz完成签到,获得积分10
1秒前
CipherSage应助卡皮巴拉yuan采纳,获得10
2秒前
2秒前
3秒前
肯德基没有黄焖鸡完成签到 ,获得积分10
3秒前
3秒前
倩倩14完成签到,获得积分20
3秒前
4秒前
4秒前
郭卓雅发布了新的文献求助10
4秒前
楠楠完成签到,获得积分10
5秒前
小雨dida完成签到,获得积分10
5秒前
5秒前
丘比特应助456487s采纳,获得10
6秒前
6秒前
6秒前
7秒前
科研通AI6应助周浩宇采纳,获得10
7秒前
chem完成签到,获得积分10
7秒前
7秒前
鱼yu发布了新的文献求助10
8秒前
可可西里完成签到 ,获得积分10
9秒前
浮游应助语恒采纳,获得10
10秒前
烟花应助徐彬荣采纳,获得10
10秒前
科研通AI5应助昏睡的蟠桃采纳,获得10
11秒前
11秒前
ULTRAMAN发布了新的文献求助10
11秒前
瑾木发布了新的文献求助10
12秒前
12秒前
Orange应助王海云采纳,获得10
12秒前
小郭完成签到,获得积分10
13秒前
13秒前
阿冲发布了新的文献求助10
14秒前
14秒前
15秒前
干饭虫应助展颜采纳,获得10
15秒前
顾矜应助QQ采纳,获得10
16秒前
华仔应助吱吱采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950265
求助须知:如何正确求助?哪些是违规求助? 4213285
关于积分的说明 13103087
捐赠科研通 3994983
什么是DOI,文献DOI怎么找? 2186731
邀请新用户注册赠送积分活动 1201966
关于科研通互助平台的介绍 1115324