细胞生物学
缺氧(环境)
PI3K/AKT/mTOR通路
生物
转录因子
蛋白激酶B
糖酵解
信号转导
化学
内分泌学
生物化学
新陈代谢
有机化学
氧气
基因
作者
Piotr Konieczny,Yue Xing,Ikjot Sidhu,Ipsita Subudhi,Kody Mansfield,Brandon Hsieh,Douglas E. Biancur,Samantha B. Larsen,Michael Edidin,Dongqing Li,Ning Xu,Cynthia A. Loomis,Adriana Heguy,Anastasia N. Tikhonova,Aristotelis Tsirigos,Shruti Naik
出处
期刊:Science
[American Association for the Advancement of Science (AAAS)]
日期:2022-07-08
卷期号:377 (6602)
被引量:104
标识
DOI:10.1126/science.abg9302
摘要
Mammalian cells autonomously activate hypoxia-inducible transcription factors (HIFs) to ensure survival in low-oxygen environments. We report here that injury-induced hypoxia is insufficient to trigger HIF1α in damaged epithelium. Instead, multimodal single-cell and spatial transcriptomics analyses and functional studies reveal that retinoic acid–related orphan receptor γt + (RORγt + ) γδ T cell–derived interleukin-17A (IL-17A) is necessary and sufficient to activate HIF1α. Protein kinase B (AKT) and extracellular signal–regulated kinase 1/2 (ERK1/2) signaling proximal of IL-17 receptor C (IL-17RC) activates mammalian target of rapamycin (mTOR) and consequently HIF1α. The IL-17A–HIF1α axis drives glycolysis in wound front epithelia. Epithelial-specific loss of IL-17RC, HIF1α, or blockade of glycolysis derails repair. Our findings underscore the coupling of inflammatory, metabolic, and migratory programs to expedite epithelial healing and illuminate the immune cell–derived inputs in cellular adaptation to hypoxic stress during repair.
科研通智能强力驱动
Strongly Powered by AbleSci AI