Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency

计算机科学 一致性(知识库) 人工智能 分级(工程) 机器学习 骨关节炎 软骨 膝关节 模式识别(心理学) 医学 外科 工程类 病理 解剖 土木工程 替代医学
作者
Jiayu Huo,Xi Ouyang,Liping Si,Kai Xuan,Sheng Wang,Weiwu Yao,Ying Liu,Jia Xu,Dahong Qian,Zhong Xue,Qian Wang,Dinggang Shen,Lichi Zhang
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:80: 102508-102508 被引量:16
标识
DOI:10.1016/j.media.2022.102508
摘要

Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助安静曼寒采纳,获得10
1秒前
高大绝义发布了新的文献求助10
1秒前
2秒前
2秒前
汉堡包应助HOXXXiii采纳,获得10
5秒前
正直箴关注了科研通微信公众号
5秒前
黑羽发布了新的文献求助10
5秒前
5秒前
Lazarus发布了新的文献求助10
6秒前
6秒前
英姑应助蛋挞采纳,获得10
6秒前
宝贝发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
面包超人完成签到,获得积分10
9秒前
hzwyyds应助米粒儿采纳,获得10
10秒前
orixero应助李木子采纳,获得10
10秒前
酷波er应助梨小昆采纳,获得10
11秒前
11秒前
闪闪的摩托完成签到,获得积分10
11秒前
Sn完成签到,获得积分10
12秒前
文静发布了新的文献求助10
13秒前
14秒前
超级李包包完成签到,获得积分10
14秒前
康康完成签到,获得积分10
14秒前
14秒前
ukmy发布了新的文献求助10
14秒前
14秒前
安静曼寒发布了新的文献求助10
15秒前
Hello应助李笑采纳,获得10
16秒前
17秒前
SIHUONIANHUA发布了新的文献求助10
17秒前
17秒前
18秒前
yhuang完成签到,获得积分10
18秒前
19秒前
19秒前
完美世界应助黑羽采纳,获得10
19秒前
热爱生活完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952701
求助须知:如何正确求助?哪些是违规求助? 3498211
关于积分的说明 11090706
捐赠科研通 3228753
什么是DOI,文献DOI怎么找? 1785094
邀请新用户注册赠送积分活动 869086
科研通“疑难数据库(出版商)”最低求助积分说明 801350