Automatic Grading Assessments for Knee MRI Cartilage Defects via Self-ensembling Semi-supervised Learning with Dual-Consistency

计算机科学 一致性(知识库) 人工智能 分级(工程) 机器学习 骨关节炎 软骨 膝关节 模式识别(心理学) 医学 外科 工程类 病理 解剖 土木工程 替代医学
作者
Jiayu Huo,Xin Ouyang,Lin Si,Kai Xuan,Sheng Wang,Weiwu Yao,Ying Li,Jia Xu,Dahong Qian,Zhong Xue,Qian Wang,Dinggang Shen,Lichi Zhang
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:80: 102508-102508 被引量:11
标识
DOI:10.1016/j.media.2022.102508
摘要

Knee cartilage defects caused by osteoarthritis are major musculoskeletal disorders, leading to joint necrosis or even disability if not intervened at early stage. Deep learning has demonstrated its effectiveness in computer-aided diagnosis, but it is time-consuming to prepare a large set of well-annotated data by experienced radiologists for model training. In this paper, we propose a semi-supervised framework to effectively use unlabeled data for better evaluation of knee cartilage defect grading. Our framework is developed based on the widely-used mean-teacher classification model, by designing a novel dual-consistency strategy to boost the consistency between the teacher and student models. The main contributions are three-fold: (1) We define an attention loss function to make the network focus on the cartilage regions, which can both achieve accurate attention masks and boost classification performance simultaneously; (2) Besides enforcing the consistency of classification results, we further design a novel attention consistency mechanism to ensure the focusing of the student and teacher networks on the same defect regions; (3) We introduce an aggregation approach to ensemble the slice-level classification outcomes for deriving the final subject-level diagnosis. Experimental results show that our proposed method can significantly improve both classification and localization performances of knee cartilage defects. Our code is available on https://github.com/King-HAW/DC-MT.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助李浅墨采纳,获得10
刚刚
刚刚
1秒前
琅千袭发布了新的文献求助10
1秒前
2秒前
我是老大应助霸气的惜寒采纳,获得10
2秒前
3秒前
Bo完成签到,获得积分10
4秒前
香菜完成签到 ,获得积分10
4秒前
顾矜应助现实的南珍采纳,获得10
4秒前
5秒前
擎天柱发布了新的文献求助10
6秒前
xx发布了新的文献求助10
6秒前
脑洞疼应助AlvinCZY采纳,获得10
7秒前
小慧完成签到,获得积分10
7秒前
7秒前
楠楠完成签到 ,获得积分10
7秒前
Double_N发布了新的文献求助10
8秒前
调研昵称发布了新的文献求助10
8秒前
tramp发布了新的文献求助10
9秒前
穆振家完成签到,获得积分10
10秒前
11秒前
wanci应助小慧采纳,获得10
11秒前
12秒前
科目三应助lulu采纳,获得30
12秒前
13秒前
研友_Z14Yln应助媛宝&硕宝采纳,获得10
13秒前
14秒前
QY完成签到,获得积分10
15秒前
Misty发布了新的文献求助10
16秒前
zjfmmu完成签到,获得积分10
17秒前
Zysplus发布了新的文献求助10
17秒前
Jasper应助zrw采纳,获得10
17秒前
积极以云发布了新的文献求助10
17秒前
my发布了新的文献求助10
17秒前
17秒前
鑫缘发布了新的文献求助10
18秒前
Missing发布了新的文献求助30
18秒前
18秒前
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Devlopment of GaN Resonant Cavity LEDs 666
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3454966
求助须知:如何正确求助?哪些是违规求助? 3050269
关于积分的说明 9020709
捐赠科研通 2738874
什么是DOI,文献DOI怎么找? 1502329
科研通“疑难数据库(出版商)”最低求助积分说明 694480
邀请新用户注册赠送积分活动 693178