Feature pyramid network with self-guided attention refinement module for crack segmentation

棱锥(几何) 计算机科学 分割 特征(语言学) 人工智能 模式识别(心理学) 人工神经网络 精确性和召回率 航程(航空) 架空(工程) 算法 数学 程序设计语言 材料科学 哲学 语言学 复合材料 几何学
作者
Jeremy C.H. Ong,Stephen Lau,Mohd-ZP Ismadi,Xin Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE Publishing]
卷期号:22 (1): 672-688 被引量:32
标识
DOI:10.1177/14759217221089571
摘要

Automated pavement crack segmentation is challenging due to the random shape of cracks, complex background textures and the presence of miscellaneous objects. In this paper, we implemented a Self-Guided Attention Refinement module and incorporated it on top of a Feature Pyramid Network (FPN) to model long-range contextual information. The module uses multi-scale features integrated from different layers in the FPN to refine the features at each layer of the FPN using a self-attention mechanism. The module enables the earlier layers and deeper layers of FPN to suppress noise and increase the crack details, respectively. The proposed network obtains an F1 score of 79.43% and 96.19% on the Crack500 and CFD datasets, respectively. Furthermore, the network also generalizes better than other state-of-the-art methods when tested on uncropped Crack500 and field images using the weights trained on CFD. In addition, ablation tests using the Crack500 dataset are conducted. The Self-Guided Attention Refinement module increases the average F1 score and recall by 0.6% and 0.8% while roughly maintaining the average precision. From the ablation test, the inclusion of the Self-Guided Attention Refinement module allows the network to segment finer and more continuous cracks. Then, the module is incorporated on PANet, DeepLab v3+ and U-Net to verify the improvements made to FPN. The results show that the module improves the F1 score, precision and recall compared to the absence of it. Moreover, the Self-Guided Attention Refinement Module is compared with the Self-Adaptive Sparse Transform Module (SASTM). The results show that the Self-Guided Attention Refinement Module provides a more consistent improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaiirrii发布了新的文献求助10
1秒前
健康的妙菱完成签到,获得积分10
1秒前
2秒前
Yy杨优秀完成签到,获得积分10
2秒前
tianmengkui完成签到,获得积分10
3秒前
Babe1934完成签到,获得积分10
3秒前
3秒前
无情听南发布了新的文献求助10
4秒前
4秒前
鱼鱼鱼完成签到,获得积分10
4秒前
顾矜应助max采纳,获得10
5秒前
5秒前
共享精神应助Eric采纳,获得10
6秒前
石石发布了新的文献求助30
6秒前
彩色的白秋完成签到,获得积分10
6秒前
桐桐应助巴豆有点妖采纳,获得10
7秒前
7秒前
汉堡包应助enen采纳,获得10
7秒前
8秒前
8秒前
个性的汲发布了新的文献求助10
10秒前
可乐完成签到,获得积分10
10秒前
10秒前
10秒前
11秒前
所发生的冯绍峰完成签到,获得积分10
11秒前
LJR完成签到,获得积分10
11秒前
11秒前
上官若男应助aaiirrii采纳,获得10
12秒前
yznfly应助yooloo采纳,获得30
13秒前
淡然冬灵发布了新的文献求助10
13秒前
积极的忆曼完成签到,获得积分10
13秒前
Leo完成签到,获得积分10
14秒前
Akim应助花痴的沂采纳,获得10
14秒前
马良完成签到,获得积分10
15秒前
风中的青发布了新的文献求助10
15秒前
15秒前
vivian完成签到,获得积分10
15秒前
上岸上岸完成签到,获得积分10
17秒前
情怀应助个性的汲采纳,获得10
17秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961223
求助须知:如何正确求助?哪些是违规求助? 3507496
关于积分的说明 11136509
捐赠科研通 3239958
什么是DOI,文献DOI怎么找? 1790571
邀请新用户注册赠送积分活动 872449
科研通“疑难数据库(出版商)”最低求助积分说明 803186