亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Feature pyramid network with self-guided attention refinement module for crack segmentation

棱锥(几何) 计算机科学 分割 特征(语言学) 人工智能 模式识别(心理学) 人工神经网络 精确性和召回率 航程(航空) 架空(工程) 算法 数学 程序设计语言 材料科学 复合材料 语言学 几何学 哲学
作者
Jeremy C.H. Ong,Stephen Lau,Mohd-ZP Ismadi,Xin Wang
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:22 (1): 672-688 被引量:38
标识
DOI:10.1177/14759217221089571
摘要

Automated pavement crack segmentation is challenging due to the random shape of cracks, complex background textures and the presence of miscellaneous objects. In this paper, we implemented a Self-Guided Attention Refinement module and incorporated it on top of a Feature Pyramid Network (FPN) to model long-range contextual information. The module uses multi-scale features integrated from different layers in the FPN to refine the features at each layer of the FPN using a self-attention mechanism. The module enables the earlier layers and deeper layers of FPN to suppress noise and increase the crack details, respectively. The proposed network obtains an F1 score of 79.43% and 96.19% on the Crack500 and CFD datasets, respectively. Furthermore, the network also generalizes better than other state-of-the-art methods when tested on uncropped Crack500 and field images using the weights trained on CFD. In addition, ablation tests using the Crack500 dataset are conducted. The Self-Guided Attention Refinement module increases the average F1 score and recall by 0.6% and 0.8% while roughly maintaining the average precision. From the ablation test, the inclusion of the Self-Guided Attention Refinement module allows the network to segment finer and more continuous cracks. Then, the module is incorporated on PANet, DeepLab v3+ and U-Net to verify the improvements made to FPN. The results show that the module improves the F1 score, precision and recall compared to the absence of it. Moreover, the Self-Guided Attention Refinement Module is compared with the Self-Adaptive Sparse Transform Module (SASTM). The results show that the Self-Guided Attention Refinement Module provides a more consistent improvement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
6秒前
Vivian发布了新的文献求助30
11秒前
Fox完成签到,获得积分10
16秒前
科研通AI2S应助魏欣娜采纳,获得10
19秒前
19秒前
维颖完成签到,获得积分10
21秒前
34秒前
38秒前
39秒前
zhvjdb发布了新的文献求助10
43秒前
Raju发布了新的文献求助100
46秒前
英姑应助lpy李采纳,获得10
46秒前
52秒前
zhvjdb完成签到,获得积分10
56秒前
Yuuw发布了新的文献求助10
57秒前
bastien驳回了xxfsx应助
57秒前
58秒前
58秒前
Huzhu应助魏欣娜采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得30
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
华仔应助科研通管家采纳,获得10
1分钟前
Yuuw完成签到,获得积分10
1分钟前
1分钟前
Sherry发布了新的文献求助20
1分钟前
充电宝应助青柠采纳,获得10
1分钟前
科研通AI2S应助魏欣娜采纳,获得10
1分钟前
1分钟前
1分钟前
33发布了新的文献求助10
1分钟前
1分钟前
田様应助yydcmnyxx采纳,获得30
1分钟前
2分钟前
RNATx完成签到,获得积分10
2分钟前
lpy李发布了新的文献求助10
2分钟前
lcxw1224完成签到,获得积分10
2分钟前
科目三应助Sherry采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482272
求助须知:如何正确求助?哪些是违规求助? 4583190
关于积分的说明 14388849
捐赠科研通 4512197
什么是DOI,文献DOI怎么找? 2472722
邀请新用户注册赠送积分活动 1459016
关于科研通互助平台的介绍 1432418