A novel flow-vector generation approach for malicious traffic detection

计算机科学 流量(数学) 流量网络 计算机安全 数学优化 数学 几何学
作者
Jian Hou,Fangai Liu,Hui Lu,Zhiyuan Tan,Xuqiang Zhuang,Zhihong Tian
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:169: 72-86 被引量:1
标识
DOI:10.1016/j.jpdc.2022.06.004
摘要

Malicious traffic detection is one of the most important parts of cyber security. The approaches of using the flow as the detection object are recognized as effective. Benefiting from the development of deep learning techniques, raw traffic can be directly used as a feature to detect malicious traffic. Most existing work usually converts raw traffic into images or long sequences to express a flow and then uses deep learning technology to extract features and classify them, but the generated features contain much redundant or even useless information, especially for encrypted traffic. The packet header field contains most of the packet characteristics except the payload content, and it is also an important element of the flow. In this paper, we only use the fields of the packet header in the raw traffic to construct the characteristic representation of the traffic and propose a novel flow-vector generation approach for malicious traffic detection. The preprocessed header fields are embedded as field vectors, and then a two-layer attention network is used to progressively generate the packet vectors and the flow vector containing context information. The flow vector is regarded as the abstraction of the raw traffic and is used to classify. The experiment results illustrate that the accuracy rate can reach up to 99.48% in the binary classification task and the average of AUC-ROC can reach 0.9988 in the multi-classification task. • We proposed an approach to gradually construct flow vectors from the field vector. • Extract information irrelevant to the payload from the raw traffic as input. • Unique field value representation makes the embedded vector more effective. • The adjustable number of packets in-flow makes the model more flexible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sptyzl完成签到 ,获得积分10
刚刚
1秒前
喜静完成签到,获得积分10
1秒前
2秒前
科目三应助小牛采纳,获得10
3秒前
科研通AI2S应助超帅路灯采纳,获得10
4秒前
7秒前
i好运完成签到,获得积分10
9秒前
libe完成签到,获得积分10
9秒前
10秒前
笑点低戾发布了新的文献求助10
10秒前
NexusExplorer应助houchengru采纳,获得10
10秒前
夜枫完成签到 ,获得积分10
15秒前
ziying126发布了新的文献求助10
16秒前
16秒前
大胆易巧完成签到 ,获得积分10
18秒前
LX完成签到,获得积分10
19秒前
豆豆完成签到 ,获得积分10
19秒前
20秒前
大个应助嗯嗯嗯采纳,获得10
21秒前
23秒前
退而求其次完成签到,获得积分10
23秒前
23秒前
24秒前
26秒前
27秒前
qqz发布了新的文献求助10
29秒前
29秒前
lily336699发布了新的文献求助10
30秒前
zhikaiyici发布了新的文献求助20
30秒前
王云云完成签到 ,获得积分10
30秒前
houchengru发布了新的文献求助10
31秒前
shiming完成签到 ,获得积分10
31秒前
早睡早起身体好完成签到,获得积分10
33秒前
34秒前
Klaust发布了新的文献求助10
35秒前
梅啦啦完成签到 ,获得积分10
36秒前
无花果应助温伊采纳,获得10
36秒前
hyx发布了新的文献求助10
37秒前
小牛完成签到,获得积分20
38秒前
高分求助中
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
Manual of Sewer Condition Classification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3122853
求助须知:如何正确求助?哪些是违规求助? 2773205
关于积分的说明 7716973
捐赠科研通 2428741
什么是DOI,文献DOI怎么找? 1289978
科研通“疑难数据库(出版商)”最低求助积分说明 621678
版权声明 600188