计算机科学
流量(数学)
流量网络
计算机安全
数学优化
数学
几何学
作者
Jian Hou,Fangai Liu,Hui Lu,Zhiyuan Tan,Xuqiang Zhuang,Zhihong Tian
标识
DOI:10.1016/j.jpdc.2022.06.004
摘要
Malicious traffic detection is one of the most important parts of cyber security. The approaches of using the flow as the detection object are recognized as effective. Benefiting from the development of deep learning techniques, raw traffic can be directly used as a feature to detect malicious traffic. Most existing work usually converts raw traffic into images or long sequences to express a flow and then uses deep learning technology to extract features and classify them, but the generated features contain much redundant or even useless information, especially for encrypted traffic. The packet header field contains most of the packet characteristics except the payload content, and it is also an important element of the flow. In this paper, we only use the fields of the packet header in the raw traffic to construct the characteristic representation of the traffic and propose a novel flow-vector generation approach for malicious traffic detection. The preprocessed header fields are embedded as field vectors, and then a two-layer attention network is used to progressively generate the packet vectors and the flow vector containing context information. The flow vector is regarded as the abstraction of the raw traffic and is used to classify. The experiment results illustrate that the accuracy rate can reach up to 99.48% in the binary classification task and the average of AUC-ROC can reach 0.9988 in the multi-classification task. • We proposed an approach to gradually construct flow vectors from the field vector. • Extract information irrelevant to the payload from the raw traffic as input. • Unique field value representation makes the embedded vector more effective. • The adjustable number of packets in-flow makes the model more flexible.
科研通智能强力驱动
Strongly Powered by AbleSci AI