A novel flow-vector generation approach for malicious traffic detection

计算机科学 流量(数学) 流量网络 计算机安全 数学优化 数学 几何学
作者
Jian Hou,Fangai Liu,Hui Lu,Zhiyuan Tan,Xuqiang Zhuang,Zhihong Tian
出处
期刊:Journal of Parallel and Distributed Computing [Elsevier]
卷期号:169: 72-86 被引量:1
标识
DOI:10.1016/j.jpdc.2022.06.004
摘要

Malicious traffic detection is one of the most important parts of cyber security. The approaches of using the flow as the detection object are recognized as effective. Benefiting from the development of deep learning techniques, raw traffic can be directly used as a feature to detect malicious traffic. Most existing work usually converts raw traffic into images or long sequences to express a flow and then uses deep learning technology to extract features and classify them, but the generated features contain much redundant or even useless information, especially for encrypted traffic. The packet header field contains most of the packet characteristics except the payload content, and it is also an important element of the flow. In this paper, we only use the fields of the packet header in the raw traffic to construct the characteristic representation of the traffic and propose a novel flow-vector generation approach for malicious traffic detection. The preprocessed header fields are embedded as field vectors, and then a two-layer attention network is used to progressively generate the packet vectors and the flow vector containing context information. The flow vector is regarded as the abstraction of the raw traffic and is used to classify. The experiment results illustrate that the accuracy rate can reach up to 99.48% in the binary classification task and the average of AUC-ROC can reach 0.9988 in the multi-classification task. • We proposed an approach to gradually construct flow vectors from the field vector. • Extract information irrelevant to the payload from the raw traffic as input. • Unique field value representation makes the embedded vector more effective. • The adjustable number of packets in-flow makes the model more flexible.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Timelapse应助清脆靳采纳,获得10
刚刚
chall应助学习采纳,获得10
1秒前
小兔叽完成签到 ,获得积分10
2秒前
2秒前
3秒前
小二发布了新的文献求助10
3秒前
核桃发布了新的文献求助10
3秒前
4秒前
胡亚楠完成签到,获得积分10
5秒前
清蒸可达鸭完成签到,获得积分10
5秒前
Gauss应助YZY采纳,获得30
6秒前
牛哥发布了新的文献求助10
7秒前
拉手刹打方向完成签到,获得积分10
7秒前
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
爆米花应助科研通管家采纳,获得10
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
浮游应助科研通管家采纳,获得10
8秒前
9秒前
彭于晏应助科研通管家采纳,获得10
9秒前
ZOE应助科研通管家采纳,获得50
9秒前
liuliu发布了新的文献求助10
9秒前
道衍先一完成签到,获得积分10
9秒前
思念发布了新的文献求助30
9秒前
Shu舒完成签到,获得积分10
10秒前
10秒前
jstagey完成签到,获得积分10
10秒前
纤指细轻捻完成签到 ,获得积分10
12秒前
michael发布了新的文献求助30
13秒前
牛哥完成签到,获得积分10
13秒前
yooo完成签到,获得积分20
14秒前
合适怡完成签到,获得积分10
15秒前
15秒前
烟花应助Zox采纳,获得10
15秒前
吴晨曦完成签到,获得积分10
15秒前
16秒前
如梦如画完成签到,获得积分10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565888
求助须知:如何正确求助?哪些是违规求助? 4650917
关于积分的说明 14693715
捐赠科研通 4592950
什么是DOI,文献DOI怎么找? 2519814
邀请新用户注册赠送积分活动 1492175
关于科研通互助平台的介绍 1463370