Ship trajectory planning for collision avoidance using hybrid ARIMA-LSTM models

自回归积分移动平均 弹道 碰撞 避碰 计算机科学 职位(财务) 自动识别系统 时间序列 控制理论(社会学) 人工智能 实时计算 机器学习 控制(管理) 物理 计算机安全 财务 天文 经济
作者
Misganaw Abebe,Yoojeong Noh,Young-Jin Kang,Chanhee Seo,Donghyun Kim,Jin Joo Seo
出处
期刊:Ocean Engineering [Elsevier BV]
卷期号:256: 111527-111527 被引量:56
标识
DOI:10.1016/j.oceaneng.2022.111527
摘要

In maritime transportation, accurate estimation of ship trajectories has a great impact on collision-free trajectory planning. Previously, many approaches were proposed for ship trajectory estimation, of which multi-step estimation received more attention because it can estimate both position and time in the near future. Nevertheless, those approaches have limitations due to their low accuracy or high complexity. To resolve this problem, this study provides a hybrid Autoregressive Integrated Moving Average (ARIMA) – Long short-term memory (LSTM) model to forecast the near future ship trajectory using automatic identification system (AIS) data for subsequent ship collision avoidance. By using a moving average (MA) filter, the AIS data are decomposed into linear and nonlinear data, and ARIMA and LSTM, respectively, are applied to model the ship's trajectory. The proposed model is tested and validated in terms of accuracy and computational time under different situations and compared with ARIMA, LSTM, and a previously suggested hybrid model. Finally, collision-avoidance simulations are conducted for various collision situations, showing that the proposed model can accurately estimate a near-future trajectory and evaluate collision risks to make proper early decisions to avoid the possibility of a collision.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xymy发布了新的文献求助10
1秒前
1秒前
Aliya完成签到 ,获得积分10
1秒前
无私的珩发布了新的文献求助10
2秒前
Xk完成签到,获得积分20
3秒前
3秒前
4秒前
应天亦发布了新的文献求助20
4秒前
4秒前
ste完成签到,获得积分10
5秒前
大模型应助郎梟采纳,获得10
5秒前
称心的妖妖完成签到,获得积分10
5秒前
Lucas应助许昊龙采纳,获得10
6秒前
6秒前
A2QD发布了新的文献求助10
6秒前
sarah完成签到,获得积分10
6秒前
xymy完成签到,获得积分20
6秒前
6秒前
百事从欢发布了新的文献求助10
7秒前
欢呼妙菱发布了新的文献求助10
7秒前
8秒前
wang完成签到,获得积分10
8秒前
书虫完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
想吃烤鸭发布了新的文献求助10
9秒前
CAOHOU应助沉默冬卉采纳,获得10
9秒前
SciGPT应助xymy采纳,获得10
9秒前
lii应助水牛采纳,获得10
10秒前
小马发布了新的文献求助10
10秒前
10秒前
11秒前
11秒前
11秒前
俏皮小松鼠给俏皮小松鼠的求助进行了留言
12秒前
13秒前
小曾应助流白采纳,获得10
14秒前
14秒前
甜美怜蕾完成签到 ,获得积分10
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987054
求助须知:如何正确求助?哪些是违规求助? 3529416
关于积分的说明 11244990
捐赠科研通 3267882
什么是DOI,文献DOI怎么找? 1803968
邀请新用户注册赠送积分活动 881257
科研通“疑难数据库(出版商)”最低求助积分说明 808650