Photocatalysis/enzymolysis-based biomimetic Schottky junction reduces tumor interstitial solid and fluid phases for deep-penetrating tumor therapy

间质液 静水压力 细胞外液 纳米医学 化学 光热治疗 光催化 药物输送 生物物理学 材料科学 癌症研究 纳米颗粒 纳米技术 病理 细胞外 生物化学 医学 有机化学 催化作用 物理 热力学 生物
作者
Zining Hao,Yuchu He,Jing Wang,Xuwu Zhang,Fei Ye,Ze Guan,Xiaokang Liu,Zhenhe Ma,Yi Yuan,Hongming Lou,Dawei Gao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:446: 137196-137196 被引量:7
标识
DOI:10.1016/j.cej.2022.137196
摘要

Tumor interstitial solid phase-induced physical obstacles and fluid phase-induced hydrostatic pressure are regarded as the two main intractable barriers of drug delivery, leading to the survive of deep-seated tumor stem cells. Herein, a rational strategy is presented based on near-infrared light-stimuli enzymolysis and photocatalysis to decompose the tumor interstitial solid and fluid phases for boosting the tumor penetration of nanomedicine. In detail, a cuprous oxide/sliver nano-photocatalyst (Cu2O/Ag) is designed, which is covered with the thermosensitive papain-loaded tumor-homing homologous cytomembrane to form the nanomedicine (Cu2O/[email protected]). With the light irradiation, the heat generated by Cu2O/Ag promote the enzymolysis of extracellular matrix by papain, which eliminate the physical obstacles. Moreover, the photocatalytic water splitting of Cu2O/Ag reduce the volume of tumor interstitial fluid, which decrease the elevated hydrostatic pressure to boost the tumor penetration of nanomedicine. Additionally, during the intratumoral delivery, Cu2O/[email protected] is able to realize anti-tumor photothermal therapy and chemotherapy. The results indicate that the Cu2O/[email protected] decompose a majority of tumor extracellular matrix and interstitial fluid under light irradiation. The tumor interstitial hydrostatic pressure is reduced by 69.7%. The tumor penetration of Cu2O/[email protected] + L treated group is 5.03-fold than the Cu2O/[email protected]−L group, leading to the 95.19% of tumor inhibition rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传奇3应助9527采纳,获得10
刚刚
刚刚
zzhui完成签到 ,获得积分10
1秒前
科研通AI5应助结实的芷文采纳,获得10
2秒前
CodeCraft应助棉棉采纳,获得10
4秒前
Mitophagy完成签到,获得积分20
4秒前
彭于晏应助半山采纳,获得10
5秒前
赘婿应助完美芹采纳,获得10
5秒前
5秒前
迟大猫应助成就的冰绿采纳,获得10
6秒前
6秒前
7秒前
8秒前
ding应助Jy采纳,获得10
8秒前
黄景瑜发布了新的文献求助10
8秒前
9秒前
9527发布了新的文献求助10
10秒前
leoluo完成签到,获得积分20
11秒前
fa完成签到,获得积分10
11秒前
包驳发布了新的文献求助10
12秒前
12秒前
13秒前
科研通AI5应助乡宁采纳,获得10
13秒前
13秒前
无望发布了新的文献求助10
13秒前
chenjun7080发布了新的文献求助10
13秒前
gg完成签到,获得积分20
14秒前
清流发布了新的文献求助10
15秒前
田様应助shanshan采纳,获得10
15秒前
浑灵安发布了新的文献求助100
16秒前
夹心饼干关注了科研通微信公众号
16秒前
17秒前
ChrisKim发布了新的文献求助10
18秒前
gg发布了新的文献求助30
18秒前
xiaoyao发布了新的文献求助10
18秒前
19秒前
19秒前
善学以致用应助后叶忽安采纳,获得10
20秒前
归尘发布了新的文献求助10
20秒前
干净的芮发布了新的文献求助20
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797