Molecular dynamics simulations on AlCl3-LiCl molten salt with deep learning potential

熔盐 分子动力学 热扩散率 扩散 工作(物理) 粘度 热膨胀 化学 热力学 化学物理 径向分布函数 材料科学 计算化学 无机化学 物理
作者
Min Bu,Wenshuo Liang,Guimin Lu
出处
期刊:Computational Materials Science [Elsevier BV]
卷期号:210: 111494-111494 被引量:16
标识
DOI:10.1016/j.commatsci.2022.111494
摘要

AlCl3-LiCl molten salt is a promising candidate used in high-temperature batteries as cathode material to promote the development of renewable energy. Properties of AlCl3-LiCl molten salt are scarce, however, accurate and effective prediction from experienced molecular dynamics and ab initio dynamics remains a challenge. A fast and accurate simulation method based on ab initio datasets and deep neural networks, using machine learning technique, was adopted in this work. A deep potential model was constructed and trained to reproduce the energy and force of AlCl3-LiCl molten salt. Deep potential molecular dynamics simulations were carried out to investigate the local structure and properties using the deep potential model. Structural analysis including partial radial distribution function, coordination number distribution and angular distribution function suggests that the coordinated structure of Cl− around Al3+ is a stabilized and regular tetrahedron, these tetrahedrons form a sparse network liquid structure in mixtures mainly through corner-sharing. Meanwhile, properties like density, thermal expansion coefficient, specific heat capacity, self-diffusion coefficient and shear viscosity were discussed. Property discussion reveals that density and shear viscosity shows a negative relationship with temperature, the diffusivity of each ion species in AlCl3-LiCl molten salt mixture follows the order Li+ > Al3+ ≈ Cl− and the diffusivity increases with the rising temperature. This work enriches the fundamental data of property for AlCl3-LiCl molten salt and suggests an effective and accurate approach to other molten salt investigations in the future.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI2S应助清新的问枫采纳,获得10
2秒前
kk给稻草人的求助进行了留言
3秒前
CodeCraft应助Wand采纳,获得10
5秒前
5秒前
Akim应助z620采纳,获得30
6秒前
雨曦发布了新的文献求助10
7秒前
8秒前
spirit完成签到,获得积分10
8秒前
低调爱学习完成签到,获得积分10
8秒前
sankumao发布了新的文献求助10
9秒前
10秒前
11秒前
evny发布了新的文献求助10
11秒前
12秒前
13秒前
雨曦完成签到,获得积分10
13秒前
淼吉发布了新的文献求助20
14秒前
Zzhangoo发布了新的文献求助10
14秒前
wangxiu发布了新的文献求助50
14秒前
15秒前
天天快乐应助小脆皮采纳,获得10
15秒前
科研通AI5应助sankumao采纳,获得10
17秒前
迷l发布了新的文献求助10
17秒前
陈卓轩发布了新的文献求助10
17秒前
18秒前
19秒前
20秒前
今后应助boytoa采纳,获得10
20秒前
21秒前
21秒前
大模型应助勤奋的丸子采纳,获得10
21秒前
共享精神应助魔幻安筠采纳,获得10
21秒前
科研通AI2S应助wangxiu采纳,获得10
22秒前
SciGPT应助Zzhangoo采纳,获得10
23秒前
LIKUN发布了新的文献求助10
24秒前
FORK发布了新的文献求助10
25秒前
26秒前
sky发布了新的文献求助10
26秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
The Cambridge Handbook of Social Theory 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3999793
求助须知:如何正确求助?哪些是违规求助? 3539210
关于积分的说明 11276221
捐赠科研通 3277890
什么是DOI,文献DOI怎么找? 1807763
邀请新用户注册赠送积分活动 884231
科研通“疑难数据库(出版商)”最低求助积分说明 810142