亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterization of Tin Phosphide Films for All-Solid-State Battery Anode Fabricated By Aerosol Deposition

材料科学 阳极 磷化物 锂(药物) 化学工程 阴极 电解质 陶瓷 电极 纳米技术 复合材料 冶金 金属 电气工程 化学 医学 工程类 内分泌学 物理化学
作者
Ryoji Inada,Azuma Daiki,Mike Wang,Jeff Sakamoto,Yoji Sakurai
出处
期刊:Meeting abstracts 卷期号:MA2019-02 (7): 709-709
标识
DOI:10.1149/ma2019-02/7/709
摘要

Aerosol deposition (AD) method has many advantages compared to the conventional film deposition process [1]. This method uses impact consolidation at room temperature between raw ceramic particles and substrate during aerosolized powders crash onto the substrate. The film formed by AD has relatively dense structure made of nanocrystalline particles and its structural and physical properties is similar to base powder material. This feature is attractive for the fabrication of oxide-based solid state batteries, because various electrode layers can be formed on solid electrolyte without any thermal treatment [2-4]. In order to achieve higher energy density of the all-solid-state battery, the use of both cathode and anode materials with high capacity are required. Tin phosphide Sn 4 P 3 is one of the high capacity anode materials for lithium ion batteries, with the thoretical lithium storage capacity of 1256 mAh g -1 [5]. In lithium insertion process, Sn 4 P 3 forms Sn and Li 3 P and Li 3 P would act as a matrix suppressing the volume change during alloying reaction and keep the electrode particles mechanically connected together. Moreover, Li 3 P has good ionic conductivity so that self-formation of a good ionic conduction matrix is formed in the electrode in lithium insertion process. Therefore, Sn 4 P 3 is considered to be attractive candidate for anode with high capacity of all-solid-state lithium-ion batteries. In this study, we fabricated Sn 4 P 3 film electrode by AD on both SUS316L plate and garnet-type Ta-doped Li 7 La 3 Zr 2 O 12 (LLZTO) solid electrolyte and electrical and electrochemical properties of the films were investigated. Ball-milled Sn 4 P 3 powder with the size of 0.5-1 µm was used as raw material for Sn 4 P 3 film fabrication. The powders were aerosolized with N 2 carrier gas at flow rate of 10-20 L/min and splayed through the nozzle onto SUS316L plate or LLZTO sintered pellet fixed on X-Y stage in vacuumed deposition chamber to form Sn 4 P 3 film. From XRD measurement, the diffraction peaks for Sn 4 P 3 were clearly confirmed in as-deposited films by AD and other impurity phases were not observed. Sn 4 P 3 films have relatively dense structure composed of deformed and fractured particles via impact consolidation. Electronic conductivity of Sn 4 P 3 film by AD is in the range of 10 -3 -10 -2 S cm -1 at room temperature, which is slightly lower than pressed Sn 4 P 3 powders. Li metal foil was attached on the other end face of LLZTO pellet with AD Sn 4 P 3 film to consist all-solid-state cell sample. Galvanostatic testing for Sn 4 P 3 /LLZTO/Li was carried out at 0-2.5 V, 0.07 mA cm -2 (corresponding to 200 mA g -1 ) and 100ºC. As a result, reversible charge and discharge reaction in Sn 4 P 3 /LLZTO/Li solid-state cell was demonstrated, with an initial reversible capacity of 800 mAh g -1 . Influence of controlling the cell voltage range on the cycling stability for Sn 4 P 3 /LLZTO/Li solid-state cell will be discussed. This work was partly supported by JSPS KAKENHI Grant numbers 16K06218 and 16KK0127. References: [1] J. Akedo, Journal of the American Ceramic Society 89, 1834-1839, 2006. [2] T. Kato, S. Iwasaki, Y. Ishii, M. Motoyama, W.C. West, Y. Yamamoto, Y. Iriyama, Journal of Power Sources 303, 65-72, 2016. [3] R. Inada, S. Yasuda, M. Tojo, K. Tsuritani, T. Tojo, Y. Sakurai, Frontiers in Energy Research 4, 28, 2016. [4] R. Inada, T. Okuno, S. Kito, T. Tojo, Y. Sakurai, Materials 11, 1570, 2018. [5] Y.U. Kim, C.K. Lee, H.J. Sohn, T. Kanga, Journal of Electrochemical Society 151, A933-A937, 2004.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汉堡包应助更深的蓝采纳,获得10
45秒前
中中中完成签到 ,获得积分10
1分钟前
冬去春来完成签到 ,获得积分10
1分钟前
Jonas完成签到,获得积分10
1分钟前
1分钟前
Z小姐完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
山止川行完成签到 ,获得积分10
2分钟前
Leo完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
ah发布了新的文献求助30
2分钟前
ah完成签到,获得积分10
3分钟前
3分钟前
panx完成签到,获得积分10
3分钟前
4分钟前
4分钟前
一辉完成签到 ,获得积分10
4分钟前
Hziyi发布了新的文献求助10
4分钟前
Hziyi完成签到,获得积分20
4分钟前
谷六发布了新的文献求助10
5分钟前
852应助亲爱的葡萄采纳,获得10
5分钟前
5分钟前
刘闹闹完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
甜美宛儿完成签到,获得积分10
6分钟前
7分钟前
7分钟前
fff发布了新的文献求助10
7分钟前
烟花应助fff采纳,获得10
7分钟前
7分钟前
8分钟前
8分钟前
9分钟前
fff发布了新的文献求助10
9分钟前
万能图书馆应助fff采纳,获得10
10分钟前
10分钟前
高分求助中
中国国际图书贸易总公司40周年纪念文集 大事记1949-1987 2000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
草地生态学 880
Threaded Harmony: A Sustainable Approach to Fashion 799
Basic Modern Theory of Linear Complex Analytic 𝑞-Difference Equations 510
中国有机(类)肥料 500
Queer Politics in Times of New Authoritarianisms: Popular Culture in South Asia 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3059624
求助须知:如何正确求助?哪些是违规求助? 2715495
关于积分的说明 7445343
捐赠科研通 2361080
什么是DOI,文献DOI怎么找? 1251203
科研通“疑难数据库(出版商)”最低求助积分说明 607711
版权声明 596449