Swin Transformer Embedding UNet for Remote Sensing Image Semantic Segmentation

计算机科学 增采样 人工智能 分割 变压器 编码器 卷积神经网络 嵌入 模式识别(心理学) 计算机视觉 图像(数学) 物理 量子力学 电压 操作系统
作者
Xin He,Yong Zhou,Jiaqi Zhao,Di Zhang,Rui Yao,Yong Xue
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-15 被引量:448
标识
DOI:10.1109/tgrs.2022.3144165
摘要

Global context information is essential for the semantic segmentation of remote sensing (RS) images. However, most existing methods rely on a convolutional neural network (CNN), which is challenging to directly obtain the global context due to the locality of the convolution operation. Inspired by the Swin transformer with powerful global modeling capabilities, we propose a novel semantic segmentation framework for RS images called ST-U-shaped network (UNet), which embeds the Swin transformer into the classical CNN-based UNet. ST-UNet constitutes a novel dual encoder structure of the Swin transformer and CNN in parallel. First, we propose a spatial interaction module (SIM), which encodes spatial information in the Swin transformer block by establishing pixel-level correlation to enhance the feature representation ability of occluded objects. Second, we construct a feature compression module (FCM) to reduce the loss of detailed information and condense more small-scale features in patch token downsampling of the Swin transformer, which improves the segmentation accuracy of small-scale ground objects. Finally, as a bridge between dual encoders, a relational aggregation module (RAM) is designed to integrate global dependencies from the Swin transformer into the features from CNN hierarchically. Our ST-UNet brings significant improvement on the ISPRS-Vaihingen and Potsdam datasets, respectively. The code will be available at https://github.com/XinnHe/ST-UNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
LINHY应助研友_8R5zBZ采纳,获得20
刚刚
1秒前
lijiao发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
小二郎应助hyominhsu采纳,获得10
2秒前
wanci应助无问采纳,获得10
2秒前
CKK应助maybe豪采纳,获得10
2秒前
yxy840325发布了新的文献求助10
2秒前
Jackson完成签到 ,获得积分10
2秒前
3秒前
3秒前
3秒前
4秒前
Lgaga完成签到,获得积分10
4秒前
暗夜浮尘发布了新的文献求助10
4秒前
rooner发布了新的文献求助10
4秒前
橘子小狗完成签到,获得积分10
5秒前
善学以致用应助yzz采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
田様应助leo采纳,获得10
5秒前
5秒前
睡觉的猫发布了新的文献求助10
5秒前
BowieHuang应助半胖采纳,获得10
5秒前
jackY1256发布了新的文献求助10
5秒前
周国煌发布了新的文献求助10
5秒前
6秒前
6秒前
千屿完成签到,获得积分10
6秒前
精明觅荷完成签到,获得积分10
7秒前
ZHU完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
Alex发布了新的文献求助10
8秒前
白白发布了新的文献求助10
8秒前
8秒前
可爱的函函应助xx采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791