Investigation on gas sensing and temperature modulation properties of Ni2+ doped SnO2 materials to CO and H2

解吸 吸附 兴奋剂 材料科学 选择性 氧气 分析化学(期刊) 化学工程 物理化学 化学 催化作用 光电子学 有机化学 工程类
作者
Li-Sheng Zhang,Xing‐Min Guo
出处
期刊:Materials Science in Semiconductor Processing [Elsevier]
卷期号:142: 106516-106516 被引量:4
标识
DOI:10.1016/j.mssp.2022.106516
摘要

The metal oxide semiconductor sensors to quantify mixed gas components has been still difficult due to the poor selectivity although it has many advantages on application. To resolve this problem, the effect of doping on gas sensing performance was investigated. Simultaneous, PID (Proportional-Integral-Differential) temperature control technology was used to investigate the adsorption and desorption characteristics of H2 and CO by temperature modulation. The effect mechanism of Ni2+-doping and temperature-changing on adsorption-desorption of CO and H2 was proposed for distinguishing two difference. The result indicates that the responses of CO and H2 increased from 2.9 to 6.1 and 13.3 to 16.5, respectively with the increase of Ni2+ doping into SnO2, due to the increase of oxygen vacancies in gas sensing materials. It is found that the selectivity of CO to H2 was promoted nearly doubled with increase of Ni2+ doping amount to 4.0 mol% due to change of crystal structure. Temperature modulation test shows that with increases of Ni2+-doping and working temperature, the time to reach equilibrium for adsorption-desorption of gases decreased, which is considered to improve the surface activity of gas sensing materials. But the time for adsorption of the gases decreased with the increase of H2 content in the mixed gases, while the time for desorption of gases increased due to that H2 is easier to combine with adsorbed oxygen than CO. Based on the difference in adsorption and desorption in temperature-changing processes, it is a potential foundation for quantifying of CO and H2 in mixed gases by using metal oxide semiconduction sensor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
zzz完成签到,获得积分10
1秒前
1秒前
心灵美盼烟完成签到,获得积分10
1秒前
雷晨晨发布了新的文献求助10
2秒前
众行绘研应助一一采纳,获得10
2秒前
2秒前
被门夹到鸟完成签到,获得积分10
2秒前
友好的蘑菇完成签到 ,获得积分10
2秒前
海蓝云天发布了新的文献求助10
3秒前
沉静的兔子完成签到,获得积分10
3秒前
3秒前
4秒前
昭昭发布了新的文献求助10
4秒前
可耐的冰巧完成签到,获得积分10
5秒前
5秒前
5秒前
Certainty橙子完成签到 ,获得积分10
5秒前
华仔应助GOODYUE采纳,获得10
6秒前
lamer完成签到,获得积分10
6秒前
欢呼雍发布了新的文献求助30
7秒前
鱼仔关注了科研通微信公众号
7秒前
莓啤汽发布了新的文献求助10
7秒前
chen发布了新的文献求助10
8秒前
星辰大海应助守岸人采纳,获得10
8秒前
Georges-09发布了新的文献求助10
8秒前
行走的土豆完成签到,获得积分10
8秒前
seeker347发布了新的文献求助10
8秒前
科研通AI6应助KP采纳,获得10
8秒前
8秒前
大个应助没耐心坏小猫采纳,获得30
8秒前
陶醉的小海豚完成签到,获得积分10
9秒前
zhang完成签到,获得积分10
9秒前
9秒前
运气不好完成签到,获得积分10
9秒前
烤地瓜的z完成签到,获得积分10
10秒前
懒大王完成签到 ,获得积分10
10秒前
DDDSK发布了新的文献求助10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645586
求助须知:如何正确求助?哪些是违规求助? 4769324
关于积分的说明 15030847
捐赠科研通 4804312
什么是DOI,文献DOI怎么找? 2568910
邀请新用户注册赠送积分活动 1526066
关于科研通互助平台的介绍 1485676