尖晶石
材料科学
氧化物
锂(药物)
化学工程
电化学
氧化钒
无机化学
作者
Shenlong Zhao,Zepan Wang,Jiahui Huang,Ling Wang,Yangyang Liu,Wenhui Liu,Zhao-Qing Liu
标识
DOI:10.1002/anie.202114696
摘要
Atomic substitutions at the tetrahedral site (A Td ) could theoretically achieve an efficient optimization of the charge at the octahedral site (B Oh ) through the A Td -O-B Oh interactions in the spinel oxides (AB2O4). However, the precise control and adjustment of the spinel oxides are still challenging owing to the complexity of their crystal structure. In this work, we demonstrate a simple solvent method to tailor the structures of spinel oxides and further use the spinel oxide composites (ACo2O4/NCNTs, A = Mn, Co, Ni, Cu, Zn) for oxygen electrocatalysis. And the optimized MnCo2O4/NCNTs exhibit high activity and excellent durability for oxygen reduction/evolution reactions. Remarkably, the rechargeable liquid Zn-air battery equipped the MnCo2O4/NCNTs cathode affords a specific capacity of 827 mAh gZn-1 with high power density of 74.63 mW cm-2 and no voltage degradation after 300 cycles at a high charging-discharging rate (5 mA cm-2). The density functional theory (DFT) calculations reveal that the substitution could regulate the ratio of Co3+/Co2+ and thereby lead to the electronic structure modulated accompanied with the movement of d-band center. The tetrahedral and octahedral sites interact through the Mn-O-Co, the Co3+ Oh of MnCo2O4 with the optimal charge structure allows more suitable binding interaction between the active center and the oxygenated species, resulting in superior oxygen electrocatalytic performance. This work not only proves the influence of the charge modulation mechanism on the oxygen catalysis process but also provides novel strategies for the subsequent design of other oxygen catalysis materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI