清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

The applications of deep learning algorithms on in silico druggable proteins identification

可药性 人工智能 深度学习 计算机科学 机器学习 药物发现 水准点(测量) 生物医学 鉴定(生物学) 生物信息学 人工神经网络 药物开发 生物信息学 药品 生物 精神科 基因 植物 化学 生物化学 地理 心理学 大地测量学
作者
Lezheng Yu,Xue Li,Fengjuan Liu,Yizhou Li,Runyu Jing,Jiesi Luo
出处
期刊:Journal of Advanced Research [Elsevier BV]
卷期号:41: 219-231 被引量:23
标识
DOI:10.1016/j.jare.2022.01.009
摘要

The top priority in drug development is to identify novel and effective drug targets. In vitro assays are frequently used for this purpose; however, traditional experimental approaches are insufficient for large-scale exploration of novel drug targets, as they are expensive, time-consuming and laborious. Therefore, computational methods have emerged in recent decades as an alternative to aid experimental drug discovery studies by developing sophisticated predictive models to estimate unknown drugs/compounds and their targets. The recent success of deep learning (DL) techniques in machine learning and artificial intelligence has further attracted a great deal of attention in the biomedicine field, including computational drug discovery.This study focuses on the practical applications of deep learning algorithms for predicting druggable proteins and proposes a powerful predictor for fast and accurate identification of potential drug targets.Using a gold-standard dataset, we explored several typical protein features and different deep learning algorithms and evaluated their performance in a comprehensive way. We provide an overview of the entire experimental process, including protein features and descriptors, neural network architectures, libraries and toolkits for deep learning modelling, performance evaluation metrics, model interpretation and visualization.Experimental results show that the hybrid model (architecture: CNN-RNN (BiLSTM) + DNN; feature: dictionary encoding + DC_TC_CTD) performed better than the other models on the benchmark dataset. This hybrid model was able to achieve 90.0% accuracy and 0.800 MCC on the test dataset and 84.8% and 0.703 on a nonredundant independent test dataset, which is comparable to those of existing methods.We developed the first deep learning-based classifier for fast and accurate identification of potential druggable proteins. We hope that this study will be helpful for future researchers who would like to use deep learning techniques to develop relevant predictive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的函函应助追寻迎蓉采纳,获得10
3秒前
9秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
英俊的铭应助精明晓刚采纳,获得10
22秒前
28秒前
31秒前
追寻迎蓉发布了新的文献求助10
36秒前
45秒前
精明晓刚发布了新的文献求助10
52秒前
yellowonion完成签到 ,获得积分10
57秒前
小二郎应助yidezeng采纳,获得10
1分钟前
文与武完成签到 ,获得积分10
1分钟前
细心的语蓉完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
lovexz完成签到,获得积分10
1分钟前
1分钟前
乐乐应助满天都是大萌德采纳,获得10
2分钟前
2分钟前
Wen完成签到 ,获得积分10
2分钟前
情怀应助李亚宁采纳,获得10
2分钟前
5433完成签到 ,获得积分10
2分钟前
庄怀逸完成签到 ,获得积分10
2分钟前
大模型应助扳手已就位采纳,获得10
2分钟前
科研通AI5应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
2分钟前
深情安青应助精明晓刚采纳,获得10
2分钟前
李亚宁发布了新的文献求助10
2分钟前
2分钟前
2分钟前
扳手已就位完成签到,获得积分20
2分钟前
yidezeng发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Xperia发布了新的文献求助10
2分钟前
任性翠安完成签到 ,获得积分10
2分钟前
春风不语完成签到 ,获得积分10
2分钟前
精明晓刚发布了新的文献求助10
2分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506271
关于积分的说明 11128795
捐赠科研通 3238345
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069