The applications of deep learning algorithms on in silico druggable proteins identification

可药性 人工智能 深度学习 计算机科学 机器学习 药物发现 水准点(测量) 生物医学 鉴定(生物学) 生物信息学 人工神经网络 药物开发 生物信息学 药品 生物 精神科 基因 植物 化学 生物化学 地理 心理学 大地测量学
作者
Lezheng Yu,Xue Li,Fengjuan Liu,Yizhou Li,Runyu Jing,Jiesi Luo
出处
期刊:Journal of Advanced Research [Elsevier]
卷期号:41: 219-231 被引量:23
标识
DOI:10.1016/j.jare.2022.01.009
摘要

The top priority in drug development is to identify novel and effective drug targets. In vitro assays are frequently used for this purpose; however, traditional experimental approaches are insufficient for large-scale exploration of novel drug targets, as they are expensive, time-consuming and laborious. Therefore, computational methods have emerged in recent decades as an alternative to aid experimental drug discovery studies by developing sophisticated predictive models to estimate unknown drugs/compounds and their targets. The recent success of deep learning (DL) techniques in machine learning and artificial intelligence has further attracted a great deal of attention in the biomedicine field, including computational drug discovery.This study focuses on the practical applications of deep learning algorithms for predicting druggable proteins and proposes a powerful predictor for fast and accurate identification of potential drug targets.Using a gold-standard dataset, we explored several typical protein features and different deep learning algorithms and evaluated their performance in a comprehensive way. We provide an overview of the entire experimental process, including protein features and descriptors, neural network architectures, libraries and toolkits for deep learning modelling, performance evaluation metrics, model interpretation and visualization.Experimental results show that the hybrid model (architecture: CNN-RNN (BiLSTM) + DNN; feature: dictionary encoding + DC_TC_CTD) performed better than the other models on the benchmark dataset. This hybrid model was able to achieve 90.0% accuracy and 0.800 MCC on the test dataset and 84.8% and 0.703 on a nonredundant independent test dataset, which is comparable to those of existing methods.We developed the first deep learning-based classifier for fast and accurate identification of potential druggable proteins. We hope that this study will be helpful for future researchers who would like to use deep learning techniques to develop relevant predictive models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hkh发布了新的文献求助10
刚刚
刚刚
stan完成签到,获得积分10
1秒前
小太阳发布了新的文献求助10
1秒前
王美贤发布了新的文献求助10
2秒前
大方不可完成签到 ,获得积分10
2秒前
2秒前
xdf完成签到,获得积分10
3秒前
嗖嗖完成签到,获得积分10
3秒前
活力成败完成签到,获得积分10
4秒前
懒得起名完成签到,获得积分10
4秒前
LLLLLL完成签到,获得积分10
4秒前
gs发布了新的文献求助10
4秒前
keyanbrant完成签到 ,获得积分10
5秒前
此身越重洋完成签到,获得积分10
5秒前
5秒前
一只猫猫头完成签到,获得积分10
5秒前
6秒前
VDC应助Lynn采纳,获得30
6秒前
DZQ发布了新的文献求助10
7秒前
大大大怪将军应助葛子康采纳,获得10
7秒前
嘴嘴完成签到,获得积分10
7秒前
KK完成签到 ,获得积分10
7秒前
7秒前
罗成仁完成签到,获得积分20
8秒前
zz应助积极焦采纳,获得10
8秒前
李健应助积极焦采纳,获得10
8秒前
体贴的穆完成签到,获得积分10
8秒前
setid完成签到 ,获得积分10
8秒前
9秒前
hhhhhha完成签到,获得积分10
9秒前
9秒前
chenc完成签到,获得积分10
10秒前
慕青应助小陈采纳,获得10
10秒前
10秒前
x5kyi完成签到,获得积分10
10秒前
lseyj发布了新的文献求助10
10秒前
Lzlnb完成签到 ,获得积分10
11秒前
ss13l完成签到,获得积分10
11秒前
牛顿的苹果完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450648
求助须知:如何正确求助?哪些是违规求助? 3046162
关于积分的说明 9005205
捐赠科研通 2734898
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693387
邀请新用户注册赠送积分活动 691589