亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

The applications of deep learning algorithms on in silico druggable proteins identification

可药性 人工智能 深度学习 计算机科学 机器学习 药物发现 水准点(测量) 生物医学 鉴定(生物学) 生物信息学 人工神经网络 药物开发 生物信息学 药品 生物 精神科 基因 植物 化学 生物化学 地理 心理学 大地测量学
作者
Lezheng Yu,Xue Li,Fengjuan Liu,Yizhou Li,Runyu Jing,Jiesi Luo
出处
期刊:Journal of Advanced Research [Elsevier]
卷期号:41: 219-231 被引量:23
标识
DOI:10.1016/j.jare.2022.01.009
摘要

The top priority in drug development is to identify novel and effective drug targets. In vitro assays are frequently used for this purpose; however, traditional experimental approaches are insufficient for large-scale exploration of novel drug targets, as they are expensive, time-consuming and laborious. Therefore, computational methods have emerged in recent decades as an alternative to aid experimental drug discovery studies by developing sophisticated predictive models to estimate unknown drugs/compounds and their targets. The recent success of deep learning (DL) techniques in machine learning and artificial intelligence has further attracted a great deal of attention in the biomedicine field, including computational drug discovery.This study focuses on the practical applications of deep learning algorithms for predicting druggable proteins and proposes a powerful predictor for fast and accurate identification of potential drug targets.Using a gold-standard dataset, we explored several typical protein features and different deep learning algorithms and evaluated their performance in a comprehensive way. We provide an overview of the entire experimental process, including protein features and descriptors, neural network architectures, libraries and toolkits for deep learning modelling, performance evaluation metrics, model interpretation and visualization.Experimental results show that the hybrid model (architecture: CNN-RNN (BiLSTM) + DNN; feature: dictionary encoding + DC_TC_CTD) performed better than the other models on the benchmark dataset. This hybrid model was able to achieve 90.0% accuracy and 0.800 MCC on the test dataset and 84.8% and 0.703 on a nonredundant independent test dataset, which is comparable to those of existing methods.We developed the first deep learning-based classifier for fast and accurate identification of potential druggable proteins. We hope that this study will be helpful for future researchers who would like to use deep learning techniques to develop relevant predictive models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
共享精神应助星晴采纳,获得10
1分钟前
只如初完成签到 ,获得积分10
1分钟前
IMP完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
小马完成签到,获得积分10
1分钟前
1分钟前
1分钟前
李健的小迷弟应助cocopan采纳,获得10
1分钟前
1分钟前
2分钟前
cocopan发布了新的文献求助10
2分钟前
3分钟前
3分钟前
3分钟前
3分钟前
lb001完成签到 ,获得积分10
3分钟前
4分钟前
4分钟前
Fairy完成签到,获得积分10
4分钟前
4分钟前
4分钟前
stst发布了新的文献求助10
4分钟前
stst完成签到,获得积分10
4分钟前
4分钟前
4分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
5分钟前
5分钟前
6分钟前
烨枫晨曦完成签到,获得积分10
6分钟前
Zy189完成签到 ,获得积分10
6分钟前
6分钟前
BowieHuang应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
我爱学习完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534288
求助须知:如何正确求助?哪些是违规求助? 4622327
关于积分的说明 14582551
捐赠科研通 4562571
什么是DOI,文献DOI怎么找? 2500230
邀请新用户注册赠送积分活动 1479786
关于科研通互助平台的介绍 1450938