Enhancing dynamic ECG heartbeat classification with lightweight transformer model

计算机科学 心跳 人工智能 变压器 可穿戴计算机 机器学习 深度学习 模式识别(心理学) 语音识别 嵌入式系统 计算机安全 物理 量子力学 电压
作者
Lingxiao Meng,Wenjun Tan,Jiangang Ma,Ruofei Wang,Xiaoxia Yin,Yanchun Zhang
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:124: 102236-102236 被引量:69
标识
DOI:10.1016/j.artmed.2022.102236
摘要

Arrhythmia is a common class of Cardiovascular disease which is the cause for over 31% of all death over the world, according to WHOs' report. Automatic detection and classification of arrhythmia, as an effective tool of early warning, has recently been received more and more attention, especially in the applications of wearable devices for data capturing. However, different from traditional application scenarios, wearable electrocardiogram (ECG) devices have some drawbacks, such as being subject to multiple abnormal interferences, thus making accurate ventricular contraction (PVC) and supraventricular premature beat (SPB) detection to be more challenging. The traditional models for heartbeat classification suffer from the problem of large-scale parameters and the performance in dynamic ECG heartbeat classification is not satisfactory. In this paper, we propose a novel light model Lightweight Fussing Transformer to address these problems. We developed a more lightweight structure named LightConv Attention (LCA) to replace the self-attention of Fussing Transformer. LCA has reached remarkable performance level equal to or higher than self-attention with fewer parameters. In particular, we designed a stronger embedding structure (Convolutional Neural Network with attention mechanism) to enhance the weight of features of internal morphology of the heartbeat. Furthermore, we have implemented the proposed methods on real datasets and experimental results have demonstrated outstanding accuracy of detecting PVC and SPB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
红叶完成签到,获得积分10
1秒前
阔达翠彤完成签到,获得积分10
4秒前
WZH完成签到 ,获得积分10
4秒前
5秒前
CipherSage应助zhao采纳,获得10
6秒前
6秒前
传奇3应助丁牛青采纳,获得10
8秒前
8秒前
喜宝完成签到 ,获得积分10
8秒前
悦耳易烟发布了新的文献求助10
13秒前
13秒前
zjw完成签到,获得积分10
15秒前
16秒前
sqz发布了新的文献求助10
17秒前
艺涵完成签到,获得积分10
17秒前
腼腆的洪纲完成签到,获得积分10
18秒前
及禾应助李田田采纳,获得10
18秒前
wanci应助微微采纳,获得10
18秒前
19秒前
20秒前
你今天学了多少完成签到 ,获得积分10
21秒前
22秒前
23秒前
林昀完成签到 ,获得积分10
23秒前
冷静的缘分完成签到 ,获得积分10
23秒前
碧蓝问玉发布了新的文献求助10
24秒前
sqz完成签到,获得积分10
24秒前
26秒前
26秒前
烟花应助怕孤单的绿柏采纳,获得10
26秒前
Benzhdw完成签到,获得积分10
26秒前
淡淡夕阳发布了新的文献求助10
27秒前
27秒前
GT发布了新的文献求助10
27秒前
念姬发布了新的文献求助10
29秒前
keyaner完成签到,获得积分10
30秒前
睡到自然醒完成签到 ,获得积分10
32秒前
minever白完成签到,获得积分10
32秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511532
关于积分的说明 11158765
捐赠科研通 3246148
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874295
科研通“疑难数据库(出版商)”最低求助积分说明 804343