Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis

神经形态工程学 二进制数 人工神经网络 计算机科学 二元分类 非线性系统 尖峰神经网络 软件 分类器(UML) 炸薯条 模式识别(心理学) Spike(软件开发) 人工智能 支持向量机 算法 数学 物理 算术 电信 软件工程 量子力学 程序设计语言
作者
Aritra Bhaduri,Amitava Banerjee,Subhrajit Roy,Sanjeeb Kumar Kar,Arindam Basu
出处
期刊:Neural Computation [The MIT Press]
卷期号:30 (3): 723-760 被引量:20
标识
DOI:10.1162/neco_a_01045
摘要

We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助百草园采纳,获得10
3秒前
喜悦的水云完成签到 ,获得积分10
3秒前
3秒前
RuiRui完成签到,获得积分10
3秒前
yj17ying发布了新的文献求助10
3秒前
隐形曼青应助堕落叔叔采纳,获得10
4秒前
友好凡霜发布了新的文献求助10
5秒前
赘婿应助大力的菠萝采纳,获得30
9秒前
10秒前
11秒前
13秒前
堕落叔叔完成签到,获得积分10
14秒前
yj17ying完成签到,获得积分10
14秒前
why发布了新的文献求助10
15秒前
郝薇薇薇薇儿完成签到,获得积分10
16秒前
16秒前
17秒前
啊Cu吖完成签到,获得积分10
19秒前
堕落叔叔发布了新的文献求助10
19秒前
小园饼干完成签到,获得积分10
19秒前
依依发布了新的文献求助10
20秒前
量子星尘发布了新的文献求助30
21秒前
你好完成签到,获得积分10
22秒前
22秒前
犹豫板油发布了新的文献求助30
23秒前
23秒前
yunchaozhang完成签到,获得积分10
29秒前
bkagyin应助LJJ采纳,获得10
31秒前
31秒前
SYLH应助Rannn采纳,获得10
33秒前
懵懂的南珍应助why采纳,获得30
33秒前
34秒前
34秒前
梅子完成签到 ,获得积分10
36秒前
风趣的之桃完成签到,获得积分10
37秒前
38秒前
科大学子完成签到 ,获得积分10
38秒前
空空完成签到,获得积分10
38秒前
英勇星月发布了新的文献求助10
40秒前
m艺完成签到 ,获得积分10
40秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959455
求助须知:如何正确求助?哪些是违规求助? 3505634
关于积分的说明 11125092
捐赠科研通 3237449
什么是DOI,文献DOI怎么找? 1789148
邀请新用户注册赠送积分活动 871583
科研通“疑难数据库(出版商)”最低求助积分说明 802858