Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis

神经形态工程学 二进制数 人工神经网络 计算机科学 二元分类 非线性系统 尖峰神经网络 软件 分类器(UML) 炸薯条 模式识别(心理学) Spike(软件开发) 人工智能 支持向量机 算法 数学 物理 算术 电信 软件工程 量子力学 程序设计语言
作者
Aritra Bhaduri,Amitava Banerjee,Subhrajit Roy,Sanjeeb Kumar Kar,Arindam Basu
出处
期刊:Neural Computation [The MIT Press]
卷期号:30 (3): 723-760 被引量:20
标识
DOI:10.1162/neco_a_01045
摘要

We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
上官小怡发布了新的文献求助10
1秒前
Anima应助哔哩哔哩采纳,获得10
1秒前
1秒前
澎鱼盐发布了新的文献求助10
1秒前
2秒前
以水为师完成签到 ,获得积分10
2秒前
lyy给lyy的求助进行了留言
2秒前
我不理解完成签到,获得积分10
2秒前
FashionBoy应助帆布鞋采纳,获得10
3秒前
希望天下0贩的0应助玄音采纳,获得10
3秒前
任寒松发布了新的文献求助10
3秒前
比卜不发布了新的文献求助10
3秒前
完美完成签到,获得积分10
4秒前
机灵的夜梦完成签到 ,获得积分10
4秒前
4秒前
烟花应助橘落采纳,获得10
4秒前
4秒前
4秒前
5秒前
WoeL.Aug.11发布了新的文献求助10
5秒前
纷雪发布了新的文献求助10
5秒前
5秒前
受伤芝麻完成签到,获得积分10
5秒前
FN关注了科研通微信公众号
6秒前
ygm发布了新的文献求助20
6秒前
大个应助一水独流采纳,获得10
6秒前
derek10086完成签到,获得积分10
6秒前
133发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
i的问题发布了新的文献求助10
8秒前
再沉默完成签到,获得积分10
8秒前
祺君发布了新的文献求助10
9秒前
9秒前
Pzuzu完成签到,获得积分10
10秒前
结实白柏完成签到,获得积分10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5285822
求助须知:如何正确求助?哪些是违规求助? 4438771
关于积分的说明 13818542
捐赠科研通 4320267
什么是DOI,文献DOI怎么找? 2371363
邀请新用户注册赠送积分活动 1366932
关于科研通互助平台的介绍 1330369