Spiking Neural Classifier with Lumped Dendritic Nonlinearity and Binary Synapses: A Current Mode VLSI Implementation and Analysis

神经形态工程学 二进制数 人工神经网络 计算机科学 二元分类 非线性系统 尖峰神经网络 软件 分类器(UML) 炸薯条 模式识别(心理学) Spike(软件开发) 人工智能 支持向量机 算法 数学 物理 算术 电信 软件工程 量子力学 程序设计语言
作者
Aritra Bhaduri,Amitava Banerjee,Subhrajit Roy,Sanjeeb Kumar Kar,Arindam Basu
出处
期刊:Neural Computation [MIT Press]
卷期号:30 (3): 723-760 被引量:20
标识
DOI:10.1162/neco_a_01045
摘要

We present a neuromorphic current mode implementation of a spiking neural classifier with lumped square law dendritic nonlinearity. It has been shown previously in software simulations that such a system with binary synapses can be trained with structural plasticity algorithms to achieve comparable classification accuracy with fewer synaptic resources than conventional algorithms. We show that even in real analog systems with manufacturing imperfections (CV of 23.5% and 14.4% for dendritic branch gains and leaks respectively), this network is able to produce comparable results with fewer synaptic resources. The chip fabricated in [Formula: see text]m complementary metal oxide semiconductor has eight dendrites per cell and uses two opposing cells per class to cancel common-mode inputs. The chip can operate down to a [Formula: see text] V and dissipates 19 nW of static power per neuronal cell and [Formula: see text] 125 pJ/spike. For two-class classification problems of high-dimensional rate encoded binary patterns, the hardware achieves comparable performance as software implementation of the same with only about a 0.5% reduction in accuracy. On two UCI data sets, the IC integrated circuit has classification accuracy comparable to standard machine learners like support vector machines and extreme learning machines while using two to five times binary synapses. We also show that the system can operate on mean rate encoded spike patterns, as well as short bursts of spikes. To the best of our knowledge, this is the first attempt in hardware to perform classification exploiting dendritic properties and binary synapses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大妈发布了新的文献求助10
刚刚
djf完成签到,获得积分10
1秒前
狗子完成签到 ,获得积分10
3秒前
quxiaofei完成签到,获得积分10
3秒前
一二发布了新的文献求助10
4秒前
暴富解忧完成签到,获得积分10
4秒前
4秒前
Eina发布了新的文献求助30
5秒前
LL完成签到,获得积分10
5秒前
充电宝应助sam采纳,获得20
6秒前
思源应助sam采纳,获得10
6秒前
6秒前
ZOE应助sam采纳,获得50
6秒前
香蕉觅云应助顺心柠檬采纳,获得10
6秒前
7秒前
7秒前
煎饼煎饼完成签到,获得积分10
8秒前
范瑞文完成签到,获得积分10
8秒前
可爱的函函应助大妈采纳,获得10
9秒前
sss发布了新的文献求助10
11秒前
12秒前
L~发布了新的文献求助10
12秒前
成永福发布了新的文献求助10
13秒前
13秒前
13秒前
汉堡包应助莲枳榴莲采纳,获得10
14秒前
15秒前
15秒前
15秒前
Christina发布了新的文献求助10
16秒前
17秒前
19秒前
V-aliang完成签到,获得积分10
19秒前
Lan发布了新的文献求助10
20秒前
21秒前
21秒前
丁昆发布了新的文献求助10
22秒前
一二完成签到,获得积分10
23秒前
23秒前
23秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5350109
求助须知:如何正确求助?哪些是违规求助? 4483648
关于积分的说明 13956571
捐赠科研通 4382910
什么是DOI,文献DOI怎么找? 2408022
邀请新用户注册赠送积分活动 1400691
关于科研通互助平台的介绍 1374029