已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study

无线电技术 医学 神经组阅片室 磁共振成像 介入放射学 胶质母细胞瘤 肿瘤科 放射科 病理 神经学 癌症研究 精神科
作者
Zhicheng Li,Hongmin Bai,Qiuchang Sun,Qihua Li,Lei Liu,Yan Zou,Yinsheng Chen,Chaofeng Liang,Hairong Zheng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:28 (9): 3640-3650 被引量:147
标识
DOI:10.1007/s00330-017-5302-1
摘要

To build a reliable radiomics model from multiregional and multiparametric magnetic resonance imaging (MRI) for pretreatment prediction of O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status in glioblastoma multiforme (GBM). In this retrospective multicentre study, 1,705 multiregional radiomics features were automatically extracted from multiparametric MRI. A radiomics model with a minimal set of all-relevant features and a radiomics model with univariately-predictive and non-redundant features were built for MGMT methylation prediction from a primary cohort (133 patients) and tested on an independent validation cohort (60 patients). Predictive models combing clinical factors were built and evaluated. Both radiomics models were assessed on subgroups stratified by clinical factors. The radiomics model with six all-relevant features allowed pretreatment prediction of MGMT methylation (AUC=0.88, accuracy=80 %), which significantly outperformed the model with eight univariately-predictive and non-redundant features (AUC=0.76, accuracy=70 %). Combing clinical factors with radiomics features did not benefit the prediction performance. The all-relevant model achieved significantly better performance in stratified analysis. Radiomics model built from multiregional and multiparameter MRI may serve as a potential imaging biomarker for pretreatment prediction of MGMT methylation in GBM. The all-relevant features have the potential of offering better predictive power than the univariately-predictive and non-redundant features. • Multiregional and multiparametric MRI features reliably predicted MGMT methylation in multicentre cohorts. • All-relevant imaging features predicted MGMT methylation better than univariately-predictive and non-redundant features. • Combing clinical factors with radiomics features did not benefit the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sun发布了新的文献求助30
2秒前
2秒前
3秒前
董蓝天完成签到 ,获得积分10
3秒前
5秒前
Archy发布了新的文献求助10
5秒前
6秒前
俊逸如风发布了新的文献求助10
7秒前
HHYYAA发布了新的文献求助10
8秒前
搜集达人应助帅气的夏天采纳,获得10
9秒前
10秒前
klandcy完成签到,获得积分10
11秒前
背后飞柏发布了新的文献求助10
11秒前
在水一方应助HHYYAA采纳,获得10
14秒前
小二郎应助Hunter采纳,获得10
14秒前
明亮紫易完成签到,获得积分10
15秒前
热情安卉关注了科研通微信公众号
15秒前
16秒前
Ascender发布了新的文献求助10
16秒前
Yesyes发布了新的文献求助10
21秒前
21秒前
23秒前
Lucas应助默默洋葱采纳,获得10
24秒前
张维完成签到,获得积分10
27秒前
foreverchoi完成签到,获得积分10
28秒前
俊逸如风发布了新的文献求助10
29秒前
29秒前
zizhuo2完成签到,获得积分10
30秒前
天天快乐应助吴海娇采纳,获得10
32秒前
33秒前
喵小薇完成签到,获得积分10
35秒前
背后飞柏完成签到,获得积分10
35秒前
热情安卉发布了新的文献求助10
37秒前
Orange应助FrozNineTivus采纳,获得10
40秒前
Captain发布了新的文献求助10
41秒前
斯文败类应助xrzsxiaoli采纳,获得10
43秒前
dong应助gaoyayaaa采纳,获得10
44秒前
45秒前
HHYYAA完成签到,获得积分10
45秒前
HHYYAA发布了新的文献求助10
48秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959920
求助须知:如何正确求助?哪些是违规求助? 3506124
关于积分的说明 11128046
捐赠科研通 3238071
什么是DOI,文献DOI怎么找? 1789483
邀请新用户注册赠送积分活动 871803
科研通“疑难数据库(出版商)”最低求助积分说明 803021