亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study

无线电技术 医学 神经组阅片室 磁共振成像 介入放射学 胶质母细胞瘤 肿瘤科 放射科 病理 神经学 癌症研究 精神科
作者
Zhicheng Li,Hongmin Bai,Qiuchang Sun,Qihua Li,Lei Liu,Yan Zou,Yinsheng Chen,Chaofeng Liang,Hairong Zheng
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:28 (9): 3640-3650 被引量:147
标识
DOI:10.1007/s00330-017-5302-1
摘要

To build a reliable radiomics model from multiregional and multiparametric magnetic resonance imaging (MRI) for pretreatment prediction of O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status in glioblastoma multiforme (GBM). In this retrospective multicentre study, 1,705 multiregional radiomics features were automatically extracted from multiparametric MRI. A radiomics model with a minimal set of all-relevant features and a radiomics model with univariately-predictive and non-redundant features were built for MGMT methylation prediction from a primary cohort (133 patients) and tested on an independent validation cohort (60 patients). Predictive models combing clinical factors were built and evaluated. Both radiomics models were assessed on subgroups stratified by clinical factors. The radiomics model with six all-relevant features allowed pretreatment prediction of MGMT methylation (AUC=0.88, accuracy=80 %), which significantly outperformed the model with eight univariately-predictive and non-redundant features (AUC=0.76, accuracy=70 %). Combing clinical factors with radiomics features did not benefit the prediction performance. The all-relevant model achieved significantly better performance in stratified analysis. Radiomics model built from multiregional and multiparameter MRI may serve as a potential imaging biomarker for pretreatment prediction of MGMT methylation in GBM. The all-relevant features have the potential of offering better predictive power than the univariately-predictive and non-redundant features. • Multiregional and multiparametric MRI features reliably predicted MGMT methylation in multicentre cohorts. • All-relevant imaging features predicted MGMT methylation better than univariately-predictive and non-redundant features. • Combing clinical factors with radiomics features did not benefit the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
queen发布了新的文献求助30
1秒前
cxy完成签到,获得积分10
3秒前
5秒前
13秒前
14秒前
斯文败类应助博ge采纳,获得10
15秒前
stardust发布了新的文献求助10
19秒前
22秒前
馆长应助科研通管家采纳,获得20
32秒前
丘比特应助科研通管家采纳,获得30
32秒前
FashionBoy应助queen采纳,获得30
34秒前
bkagyin应助CheetahAzure采纳,获得10
40秒前
彩虹儿应助吸尘器采纳,获得10
47秒前
56秒前
星沐易发布了新的文献求助10
56秒前
傲娇而又骄傲完成签到 ,获得积分10
1分钟前
果冻橙完成签到,获得积分10
1分钟前
饼干肥熊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
上官若男应助CheetahAzure采纳,获得10
1分钟前
1分钟前
CheetahAzure发布了新的文献求助10
1分钟前
1分钟前
DPH完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
博ge发布了新的文献求助10
1分钟前
大胆楷瑞完成签到,获得积分20
1分钟前
1分钟前
1分钟前
大胆楷瑞发布了新的文献求助10
1分钟前
Unicorn完成签到,获得积分10
1分钟前
2分钟前
青柠完成签到 ,获得积分10
2分钟前
共享精神应助大胆楷瑞采纳,获得10
2分钟前
2分钟前
梦鱼完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4594910
求助须知:如何正确求助?哪些是违规求助? 4007539
关于积分的说明 12408163
捐赠科研通 3685935
什么是DOI,文献DOI怎么找? 2031557
邀请新用户注册赠送积分活动 1064815
科研通“疑难数据库(出版商)”最低求助积分说明 950145