Multiregional radiomics features from multiparametric MRI for prediction of MGMT methylation status in glioblastoma multiforme: A multicentre study

无线电技术 医学 神经组阅片室 磁共振成像 介入放射学 胶质母细胞瘤 肿瘤科 放射科 病理 神经学 癌症研究 精神科
作者
Zhicheng Li,Hongmin Bai,Qiuchang Sun,Qihua Li,Lei Liu,Yan Zou,Yinsheng Chen,Chaofeng Liang,Hairong Zheng
出处
期刊:European Radiology [Springer Nature]
卷期号:28 (9): 3640-3650 被引量:147
标识
DOI:10.1007/s00330-017-5302-1
摘要

To build a reliable radiomics model from multiregional and multiparametric magnetic resonance imaging (MRI) for pretreatment prediction of O6-methylguanine-DNA methyltransferase (MGMT) promotor methylation status in glioblastoma multiforme (GBM). In this retrospective multicentre study, 1,705 multiregional radiomics features were automatically extracted from multiparametric MRI. A radiomics model with a minimal set of all-relevant features and a radiomics model with univariately-predictive and non-redundant features were built for MGMT methylation prediction from a primary cohort (133 patients) and tested on an independent validation cohort (60 patients). Predictive models combing clinical factors were built and evaluated. Both radiomics models were assessed on subgroups stratified by clinical factors. The radiomics model with six all-relevant features allowed pretreatment prediction of MGMT methylation (AUC=0.88, accuracy=80 %), which significantly outperformed the model with eight univariately-predictive and non-redundant features (AUC=0.76, accuracy=70 %). Combing clinical factors with radiomics features did not benefit the prediction performance. The all-relevant model achieved significantly better performance in stratified analysis. Radiomics model built from multiregional and multiparameter MRI may serve as a potential imaging biomarker for pretreatment prediction of MGMT methylation in GBM. The all-relevant features have the potential of offering better predictive power than the univariately-predictive and non-redundant features. • Multiregional and multiparametric MRI features reliably predicted MGMT methylation in multicentre cohorts. • All-relevant imaging features predicted MGMT methylation better than univariately-predictive and non-redundant features. • Combing clinical factors with radiomics features did not benefit the prediction performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
栗子完成签到,获得积分10
1秒前
麻薯头头发布了新的文献求助10
3秒前
3秒前
dpy4462完成签到,获得积分10
4秒前
bkagyin应助hexiqin采纳,获得10
4秒前
大福发布了新的文献求助10
5秒前
6秒前
minima1998发布了新的文献求助10
8秒前
9秒前
加菲丰丰应助科研通管家采纳,获得10
9秒前
耀学菜菜应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
打打应助科研通管家采纳,获得10
10秒前
乐乐应助科研通管家采纳,获得10
10秒前
敬老院N号应助科研通管家采纳,获得20
10秒前
英姑应助科研通管家采纳,获得10
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
敬老院N号应助科研通管家采纳,获得20
10秒前
英俊的铭应助科研通管家采纳,获得10
10秒前
向晨发布了新的文献求助20
13秒前
surain发布了新的文献求助10
13秒前
丁真先生完成签到,获得积分10
17秒前
17秒前
努力的宝汁完成签到 ,获得积分10
18秒前
丘比特应助爱吃无核瓜子采纳,获得10
19秒前
英俊的铭应助小吉采纳,获得10
19秒前
充电宝应助麻薯头头采纳,获得10
19秒前
梓萱完成签到,获得积分10
20秒前
ning完成签到,获得积分10
22秒前
FashionBoy应助月yue采纳,获得10
22秒前
都是发布了新的文献求助10
22秒前
ding应助聪明的宛菡采纳,获得10
23秒前
我是老大应助墨瞳采纳,获得10
23秒前
合适不愁完成签到,获得积分10
25秒前
科研通AI2S应助gujianhua采纳,获得10
27秒前
27秒前
whitepiece完成签到,获得积分10
29秒前
向晨完成签到,获得积分10
30秒前
32秒前
34秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023