MPSO: Modified particle swarm optimization and its applications

粒子群优化 局部最优 计算机科学 数学优化 初始化 惯性 早熟收敛 人口 多群优化 趋同(经济学) 加速度 算法 数学 物理 人口学 经典力学 社会学 经济 程序设计语言 经济增长
作者
D. Tian,Zhongzhi Shi
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:41: 49-68 被引量:295
标识
DOI:10.1016/j.swevo.2018.01.011
摘要

Particle swarm optimization (PSO) is a population based meta-heuristic search algorithm that has been widely applied to a variety of problems since its advent. In PSO, the inertial weight not only has a crucial effect on its convergence, but also plays an important role in balancing exploration and exploitation during the evolution. However, PSO is easily trapped into the local optima and premature convergence appears when applied to complex multimodal problems. To address these issues, we present a modified particle swarm optimization with chaos-based initialization and robust update mechanisms. On the one side, the Logistic map is utilized to generate uniformly distributed particles to improve the quality of the initial population. On the other side, the sigmoid-like inertia weight is formulated to make the PSO adaptively adopt the inertia weight between linearly decreasing and nonlinearly decreasing strategies in order to achieve better tradeoff between the exploration and exploitation. During this process, a maximal focus distance is formulated to measure the particle's aggregation degree. At the same time, the wavelet mutation is applied for the particles whose fitness value is less than that of the average so as to enhance the swarm diversity. In addition, an auxiliary velocity-position update mechanism is exclusively applied to the global best particle that can effectively guarantee the convergence of MPSO. Extensive experiments on CEC′13/15 test suites and in the task of standard image segmentation validate the effectiveness and efficiency of the MPSO algorithm proposed in this paper.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助cc采纳,获得10
刚刚
大模型应助大根度几张采纳,获得10
1秒前
阿橘完成签到,获得积分10
3秒前
胖denger完成签到,获得积分10
4秒前
橘子完成签到,获得积分10
4秒前
圆圆圆完成签到,获得积分10
4秒前
忧伤的彩虹完成签到,获得积分10
6秒前
鱼雁完成签到,获得积分20
8秒前
9秒前
11秒前
12秒前
敬老院N号应助科研通管家采纳,获得30
13秒前
852应助科研通管家采纳,获得10
13秒前
Orange应助科研通管家采纳,获得10
13秒前
小马甲应助科研通管家采纳,获得10
13秒前
13秒前
Lucas应助科研通管家采纳,获得20
13秒前
搜集达人应助科研通管家采纳,获得10
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
13秒前
wanci应助科研通管家采纳,获得10
13秒前
13秒前
little_forest应助科研通管家采纳,获得20
13秒前
情怀应助Ijaz采纳,获得10
14秒前
14秒前
sandy发布了新的文献求助10
15秒前
17秒前
17秒前
熠旅发布了新的文献求助10
19秒前
justin发布了新的文献求助10
21秒前
21秒前
刻苦的Z关注了科研通微信公众号
21秒前
吃三口茄子完成签到,获得积分10
22秒前
冬冬发布了新的文献求助20
24秒前
大根度几张完成签到,获得积分10
24秒前
马蹄啸完成签到,获得积分10
24秒前
25秒前
baili123发布了新的文献求助10
25秒前
26秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211850
求助须知:如何正确求助?哪些是违规求助? 2860735
关于积分的说明 8125666
捐赠科研通 2526564
什么是DOI,文献DOI怎么找? 1360397
科研通“疑难数据库(出版商)”最低求助积分说明 643212
邀请新用户注册赠送积分活动 615356