MPSO: Modified particle swarm optimization and its applications

粒子群优化 局部最优 计算机科学 数学优化 初始化 惯性 早熟收敛 人口 多群优化 趋同(经济学) 加速度 算法 数学 物理 社会学 人口学 经济 程序设计语言 经典力学 经济增长
作者
D. Tian,Zhongzhi Shi
出处
期刊:Swarm and evolutionary computation [Elsevier]
卷期号:41: 49-68 被引量:302
标识
DOI:10.1016/j.swevo.2018.01.011
摘要

Particle swarm optimization (PSO) is a population based meta-heuristic search algorithm that has been widely applied to a variety of problems since its advent. In PSO, the inertial weight not only has a crucial effect on its convergence, but also plays an important role in balancing exploration and exploitation during the evolution. However, PSO is easily trapped into the local optima and premature convergence appears when applied to complex multimodal problems. To address these issues, we present a modified particle swarm optimization with chaos-based initialization and robust update mechanisms. On the one side, the Logistic map is utilized to generate uniformly distributed particles to improve the quality of the initial population. On the other side, the sigmoid-like inertia weight is formulated to make the PSO adaptively adopt the inertia weight between linearly decreasing and nonlinearly decreasing strategies in order to achieve better tradeoff between the exploration and exploitation. During this process, a maximal focus distance is formulated to measure the particle's aggregation degree. At the same time, the wavelet mutation is applied for the particles whose fitness value is less than that of the average so as to enhance the swarm diversity. In addition, an auxiliary velocity-position update mechanism is exclusively applied to the global best particle that can effectively guarantee the convergence of MPSO. Extensive experiments on CEC′13/15 test suites and in the task of standard image segmentation validate the effectiveness and efficiency of the MPSO algorithm proposed in this paper.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lazarus_x完成签到,获得积分10
1秒前
whm发布了新的文献求助10
2秒前
豆dou发布了新的文献求助10
4秒前
旭日东升完成签到 ,获得积分10
5秒前
yyyyou完成签到,获得积分10
6秒前
科研通AI5应助xlj采纳,获得10
8秒前
Jenny应助WZ0904采纳,获得10
8秒前
弘一完成签到,获得积分10
8秒前
郑zhenglanyou完成签到 ,获得积分10
9秒前
11秒前
忧子忘完成签到,获得积分10
11秒前
12秒前
foreverchoi完成签到,获得积分10
12秒前
HH完成签到,获得积分20
12秒前
13秒前
whm完成签到,获得积分10
13秒前
15秒前
邬傥完成签到,获得积分10
16秒前
tomato应助执着采纳,获得20
17秒前
大方嵩发布了新的文献求助10
17秒前
梓ccc完成签到,获得积分10
17秒前
17秒前
求助发布了新的文献求助10
18秒前
风雨1210发布了新的文献求助10
18秒前
18秒前
19秒前
小梁要加油完成签到,获得积分20
19秒前
Alpha发布了新的文献求助10
20秒前
刘鹏宇发布了新的文献求助10
21秒前
zhangscience完成签到,获得积分10
21秒前
可爱的函函应助若狂采纳,获得10
22秒前
小蘑菇应助阿美采纳,获得30
22秒前
科研通AI2S应助机智小虾米采纳,获得10
23秒前
充电宝应助Xx.采纳,获得10
24秒前
zhangscience发布了新的文献求助10
25秒前
深情安青应助大方嵩采纳,获得10
26秒前
英俊的铭应助大方嵩采纳,获得10
26秒前
李还好完成签到,获得积分10
27秒前
满意的柏柳完成签到,获得积分10
28秒前
29秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808