Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization

联轴节(管道) 虚拟筛选 计算机科学 人工智能 材料科学 化学 计算化学 分子动力学 复合材料
作者
Samo Turk,Benjamin Merget,Friedrich Rippmann,Simone Fulle
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (12): 3079-3085 被引量:15
标识
DOI:10.1021/acs.jcim.7b00298
摘要

Matched molecular pair (MMP) analyses are widely used in compound optimization projects to gain insights into structure–activity relationships (SAR). The analysis is traditionally done via statistical methods but can also be employed together with machine learning (ML) approaches to extrapolate to novel compounds. The here introduced MMP/ML method combines a fragment-based MMP implementation with different machine learning methods to obtain automated SAR decomposition and prediction. To test the prediction capabilities and model transferability, two different compound optimization scenarios were designed: (1) “new fragments” which occurs when exploring new fragments for a defined compound series and (2) “new static core and transformations” which resembles for instance the identification of a new compound series. Very good results were achieved by all employed machine learning methods especially for the new fragments case, but overall deep neural network models performed best, allowing reliable predictions also for the new static core and transformations scenario, where comprehensive SAR knowledge of the compound series is missing. Furthermore, we show that models trained on all available data have a higher generalizability compared to models trained on focused series and can extend beyond chemical space covered in the training data. Thus, coupling MMP with deep neural networks provides a promising approach to make high quality predictions on various data sets and in different compound optimization scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一一给一一的求助进行了留言
1秒前
隐形曼青应助胡豆采纳,获得10
1秒前
1秒前
2秒前
3秒前
科目三应助苹果紊采纳,获得10
3秒前
3秒前
Mry完成签到,获得积分10
3秒前
11完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
研友_ngJQzL完成签到,获得积分10
5秒前
5秒前
6秒前
Elan完成签到,获得积分10
6秒前
范范完成签到,获得积分20
7秒前
胡豆完成签到,获得积分10
7秒前
Akim应助廖少跑不快采纳,获得10
7秒前
莱特昊发布了新的文献求助10
8秒前
万能图书馆应助qianqina采纳,获得10
8秒前
张磊发布了新的文献求助10
8秒前
王麒发布了新的文献求助10
8秒前
hhh完成签到,获得积分10
9秒前
花花发布了新的文献求助10
9秒前
yuyyy发布了新的文献求助10
10秒前
77发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
动听曼荷完成签到,获得积分10
12秒前
悦耳怜珊完成签到 ,获得积分10
13秒前
CC完成签到,获得积分10
13秒前
14秒前
辛勤戎发布了新的文献求助10
15秒前
xc发布了新的文献求助10
17秒前
不摸鱼上啥班完成签到,获得积分10
17秒前
17秒前
qianqina完成签到,获得积分10
17秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5226893
求助须知:如何正确求助?哪些是违规求助? 4398122
关于积分的说明 13688592
捐赠科研通 4262833
什么是DOI,文献DOI怎么找? 2339293
邀请新用户注册赠送积分活动 1336675
关于科研通互助平台的介绍 1292735