Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization

联轴节(管道) 虚拟筛选 计算机科学 人工智能 材料科学 化学 计算化学 分子动力学 复合材料
作者
Samo Turk,Benjamin Merget,Friedrich Rippmann,Simone Fulle
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (12): 3079-3085 被引量:15
标识
DOI:10.1021/acs.jcim.7b00298
摘要

Matched molecular pair (MMP) analyses are widely used in compound optimization projects to gain insights into structure–activity relationships (SAR). The analysis is traditionally done via statistical methods but can also be employed together with machine learning (ML) approaches to extrapolate to novel compounds. The here introduced MMP/ML method combines a fragment-based MMP implementation with different machine learning methods to obtain automated SAR decomposition and prediction. To test the prediction capabilities and model transferability, two different compound optimization scenarios were designed: (1) “new fragments” which occurs when exploring new fragments for a defined compound series and (2) “new static core and transformations” which resembles for instance the identification of a new compound series. Very good results were achieved by all employed machine learning methods especially for the new fragments case, but overall deep neural network models performed best, allowing reliable predictions also for the new static core and transformations scenario, where comprehensive SAR knowledge of the compound series is missing. Furthermore, we show that models trained on all available data have a higher generalizability compared to models trained on focused series and can extend beyond chemical space covered in the training data. Thus, coupling MMP with deep neural networks provides a promising approach to make high quality predictions on various data sets and in different compound optimization scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
miao完成签到,获得积分10
刚刚
林甜甜很甜完成签到,获得积分10
刚刚
笑点低的凝阳完成签到,获得积分10
1秒前
妮妮发布了新的文献求助10
1秒前
1秒前
wqwq69完成签到,获得积分10
1秒前
缓慢如南应助Monday采纳,获得10
1秒前
丰富的世界完成签到 ,获得积分10
1秒前
故意的向日葵完成签到,获得积分10
2秒前
abc完成签到 ,获得积分10
2秒前
创创完成签到,获得积分10
2秒前
天天快乐应助博ge采纳,获得10
3秒前
SYLH应助ximu采纳,获得10
3秒前
风趣的觅山完成签到,获得积分10
3秒前
柠檬九分酸完成签到,获得积分10
4秒前
剧院的饭桶完成签到,获得积分10
5秒前
清爽白开水完成签到 ,获得积分10
5秒前
丘比特应助那年采纳,获得10
5秒前
5秒前
astral完成签到,获得积分10
5秒前
细腻雨莲完成签到,获得积分20
6秒前
vvwwvv完成签到 ,获得积分10
6秒前
898发布了新的文献求助10
6秒前
6秒前
四毛完成签到,获得积分10
6秒前
ZK999完成签到,获得积分10
7秒前
clay_park完成签到,获得积分10
8秒前
顺利紫山完成签到,获得积分10
8秒前
898完成签到 ,获得积分20
8秒前
SYLH应助金色热浪采纳,获得10
8秒前
9秒前
kiki完成签到 ,获得积分10
9秒前
金丝铁线完成签到,获得积分10
9秒前
爱听歌的冷安完成签到,获得积分10
10秒前
欧欧欧导发布了新的文献求助10
10秒前
11秒前
热情醉冬完成签到,获得积分10
11秒前
12秒前
JamesPei应助四毛采纳,获得10
12秒前
Majinheng完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3556269
求助须知:如何正确求助?哪些是违规求助? 3131813
关于积分的说明 9393417
捐赠科研通 2831860
什么是DOI,文献DOI怎么找? 1556519
邀请新用户注册赠送积分活动 726691
科研通“疑难数据库(出版商)”最低求助积分说明 716012