Coupling Matched Molecular Pairs with Machine Learning for Virtual Compound Optimization

联轴节(管道) 虚拟筛选 计算机科学 人工智能 材料科学 化学 计算化学 分子动力学 复合材料
作者
Samo Turk,Benjamin Merget,Friedrich Rippmann,Simone Fulle
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:57 (12): 3079-3085 被引量:15
标识
DOI:10.1021/acs.jcim.7b00298
摘要

Matched molecular pair (MMP) analyses are widely used in compound optimization projects to gain insights into structure–activity relationships (SAR). The analysis is traditionally done via statistical methods but can also be employed together with machine learning (ML) approaches to extrapolate to novel compounds. The here introduced MMP/ML method combines a fragment-based MMP implementation with different machine learning methods to obtain automated SAR decomposition and prediction. To test the prediction capabilities and model transferability, two different compound optimization scenarios were designed: (1) “new fragments” which occurs when exploring new fragments for a defined compound series and (2) “new static core and transformations” which resembles for instance the identification of a new compound series. Very good results were achieved by all employed machine learning methods especially for the new fragments case, but overall deep neural network models performed best, allowing reliable predictions also for the new static core and transformations scenario, where comprehensive SAR knowledge of the compound series is missing. Furthermore, we show that models trained on all available data have a higher generalizability compared to models trained on focused series and can extend beyond chemical space covered in the training data. Thus, coupling MMP with deep neural networks provides a promising approach to make high quality predictions on various data sets and in different compound optimization scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WCY发布了新的文献求助10
刚刚
香蕉觅云应助zhangscience采纳,获得10
刚刚
Astro完成签到,获得积分10
刚刚
一一发布了新的文献求助10
刚刚
1秒前
不安青牛应助paofu泡芙采纳,获得10
1秒前
杨阳洋发布了新的文献求助30
2秒前
nater2ver完成签到,获得积分10
2秒前
3秒前
3秒前
涤生发布了新的文献求助10
4秒前
Iris135发布了新的文献求助10
4秒前
鲨鱼完成签到,获得积分10
5秒前
5秒前
lizh187发布了新的文献求助10
6秒前
6秒前
6秒前
6秒前
可爱的函函应助慕昊强采纳,获得10
8秒前
momo发布了新的文献求助10
11秒前
仇悦完成签到,获得积分10
11秒前
11秒前
潇潇雨歇发布了新的文献求助10
11秒前
cocolu应助我要读博采纳,获得50
13秒前
小不完成签到 ,获得积分10
15秒前
ding应助魔幻的天空采纳,获得10
16秒前
白元正完成签到,获得积分10
17秒前
852应助76542cu采纳,获得10
17秒前
20秒前
易义德完成签到,获得积分10
22秒前
篇篇高分完成签到,获得积分10
22秒前
mg完成签到,获得积分10
23秒前
桃井尤川发布了新的文献求助10
24秒前
24秒前
小琪猪完成签到,获得积分10
25秒前
Accept2024完成签到,获得积分10
25秒前
375195420发布了新的文献求助10
26秒前
Hello应助粥粥卷采纳,获得10
27秒前
到江南散步完成签到,获得积分10
28秒前
科研通AI2S应助downloadpapers采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3441549
求助须知:如何正确求助?哪些是违规求助? 3038186
关于积分的说明 8970883
捐赠科研通 2726453
什么是DOI,文献DOI怎么找? 1495472
科研通“疑难数据库(出版商)”最低求助积分说明 691208
邀请新用户注册赠送积分活动 688239