Application of physiologically based toxicokinetics models in risk assessment of chemicals

毒物动力学 风险评估 基于生理学的药代动力学模型 环境科学 生化工程 计算机科学 风险分析(工程) 工程类 业务 药理学 生物 药代动力学 计算机安全
作者
Shuying Zhang,Zhongyu Wang,Jingwen Chen
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:62 (35): 4139-4150 被引量:3
标识
DOI:10.1360/n972017-00886
摘要

External exposure concentrations were conventionally employed used to quantify toxicological effects of chemicals in their risk assessment. However, internal concentrations are more suitable for understanding the toxicological effects and conducting risk assessment. It is necessary for accurate risk assessment of chemicals to predict the internal exposure of chemicals from the external exposure, and to know distribution of chemicals in different target tissues/organs (e.g. liver, kidney) of organisms. Experimental determination can hardly get high-throughput acquisition of target concentrations due to analytical limitations and expensive cost for in vivo animal tests. Alternatively, physiologically based toxicokinetics (PBTK) models that can quantitatively predict absorption, distribution, metabolism and excretion (ADME) processes of chemicals in biota are particularly useful. PBTK models could be used to predict the target concentrations, and to relate the environmental exposure concentrations with the target concentrations. Development of PBTK models can be divided into five steps. (1) Specify the general model structure. Portal of entry, target organ, lipophilicity and metabolism of chemicals are basic factors that should be considered. (2) Determine the set of ordinary differential equations representing the ADME processes of chemicals by the organism. All of these equations are mass balance equations. (3) Define model parameters, including physiological parameters, partition coefficients, biochemical rate constants and environment parameters. (4) Solve the ordinary differential equations with proper software. (5) Validate the model. Simulation results should be compared with corresponding experimental data to evaluate whether the model is accurate enough. Sensitivity, uncertainty and variability analysis should be performed to further optimize the model. Originating as a tool for serving pharmaceutical industry, PBTK models are now used in risk assessment of chemicals. PBTK models can also relate the in vivo toxicity thresholds with the in vitro toxicity thresholds. The in vitro-in vivo extrapolation can facilitate the utilization of the vast volume of high-throughput in vitro data. Traditional in vivo tests only focus on a limited number of the diverse species residing within an ecosystem. PBTK models can provide a promising cross-species solution by establishing physiologically relevant models for various species. Besides, classical indicators for hazard assessment such as bioconcentration factors could be re-evaluated by PBTK models with upgraded accuracy and details. Furthermore, it is possible to simulate the risk of chemicals that exerted on organisms over the entire lifetime of organisms with a sequence of PBTK models representing different developmental stages of the species. The combination of PBTK models and toxicodynamics (TD) models, i.e. PBTK/TD models, can further realize the simulation of the dynamic distribution of xenobiotics as well as the effects simultaneously. The power of PBTK models intended for ecological risk assessment of chemicals is yet to be fully exploited. Current PBTK models mainly apply to chemicals of neutral states. However, the molecular structures of many organic pollutants have carboxylic, phenolic groups, etc. Thus, these compounds can ionize under environmental pH conditions. A compound with different ionized states could possess different intake pathways. Thus, certain modifications of the mathematical form of the PBTK models are necessary. Another major obstacle is that the sophisticated parameters of PBTK models cannot be easily collected. Therefore, schemes for a high-throughput acquisition of the relevant parameters (e.g. quantitative structure-activity relationship models) would be highly useful. Furthermore, PBTK models should be extended to more species of ecological importance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
可爱的函函应助沉静凝荷采纳,获得10
3秒前
4秒前
1254kghg发布了新的文献求助10
4秒前
舒适谷冬发布了新的文献求助30
6秒前
Criminology34应助艾妮吗采纳,获得10
6秒前
6秒前
清秀凉面完成签到 ,获得积分10
6秒前
求文献完成签到,获得积分10
7秒前
suxing发布了新的文献求助10
8秒前
成事在人307完成签到,获得积分10
9秒前
华仔应助科研通管家采纳,获得10
10秒前
JamesPei应助科研通管家采纳,获得10
10秒前
大聪明应助科研通管家采纳,获得10
10秒前
aldehyde应助科研通管家采纳,获得10
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
科研通AI6应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
Hello应助科研通管家采纳,获得10
10秒前
脑洞疼应助科研通管家采纳,获得10
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
FashionBoy应助天气晴朗采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得30
10秒前
科目三应助1254kghg采纳,获得10
10秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
科研通AI6应助科研通管家采纳,获得10
11秒前
11秒前
浮游应助科研通管家采纳,获得10
11秒前
ccnnzzz完成签到,获得积分10
11秒前
12秒前
Luna完成签到 ,获得积分10
13秒前
青稞的酒发布了新的文献求助10
13秒前
dulu发布了新的文献求助10
14秒前
刘刘完成签到,获得积分10
14秒前
panpan完成签到,获得积分10
16秒前
7907完成签到,获得积分10
16秒前
科研通AI6应助Lolo采纳,获得10
17秒前
背后的海冬完成签到,获得积分10
18秒前
Vicky完成签到,获得积分10
18秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5380142
求助须知:如何正确求助?哪些是违规求助? 4504163
关于积分的说明 14017516
捐赠科研通 4413104
什么是DOI,文献DOI怎么找? 2424070
邀请新用户注册赠送积分活动 1416950
关于科研通互助平台的介绍 1394678