State of Health Estimation of Lithium-Ion Batteries Using Capacity Fade and Internal Resistance Growth Models

预言 淡出 内阻 健康状况 降级(电信) 颗粒过滤器 电池(电) 锂离子电池 可靠性工程 计算机科学 工程类 电子工程 卡尔曼滤波器 功率(物理) 人工智能 物理 操作系统 量子力学
作者
Arun K. Guha,Amit Patra
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:4 (1): 135-146 被引量:210
标识
DOI:10.1109/tte.2017.2776558
摘要

In this paper, a method for the estimation of remaining useful lifetime (RUL) of lithium-ion batteries has been presented based on a combination of its capacity degradation and internal resistance growth models. The capacity degradation model is developed recently based on battery capacity test data. An empirical model for internal resistance growth is also developed based on electrochemical-impedance spectroscopy (EIS) test data. The obtained models are used in a particle filtering (PF) framework for making end-of-lifetime (EOL) predictions at various phases of its lifecycle. Further, the above two models were fused together to obtain a new degradation model for RUL estimation. It has been observed that the fused degradation model has improved the standard deviation of prediction as compared to the individual degradation models by maintaining satisfactory prediction accuracy. The effect of parameter variations on the performance of the PF algorithm has also been studied. Finally, the predictions are validated with experimental data. From the results it can be observed that with the availability of longer volume of data, the prediction accuracy gradually improves. The prognostics framework proposed in this paper provides a structured way for monitoring the state of health (SoH) of a battery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
2秒前
oceanao应助科研通管家采纳,获得10
2秒前
2秒前
orixero应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
坚定自信完成签到,获得积分10
3秒前
11秒前
11秒前
旻主完成签到,获得积分10
11秒前
12秒前
负责念蕾完成签到 ,获得积分10
14秒前
追寻清完成签到,获得积分10
14秒前
科研通AI2S应助QDL采纳,获得10
15秒前
WYP发布了新的文献求助10
15秒前
16秒前
缥缈南风发布了新的文献求助10
16秒前
18秒前
haowu发布了新的文献求助10
20秒前
20秒前
研友_8DAv0L发布了新的文献求助10
20秒前
淡淡安莲完成签到 ,获得积分10
21秒前
tinanao完成签到,获得积分10
22秒前
大模型应助研友_8DAv0L采纳,获得30
25秒前
小二郎应助研友_8DAv0L采纳,获得10
25秒前
26秒前
26秒前
英俊的铭应助优雅的迎彤采纳,获得10
26秒前
轻松凡英完成签到,获得积分10
27秒前
28秒前
30秒前
无语的采柳完成签到 ,获得积分10
31秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164126
求助须知:如何正确求助?哪些是违规求助? 2814873
关于积分的说明 7906837
捐赠科研通 2474446
什么是DOI,文献DOI怎么找? 1317493
科研通“疑难数据库(出版商)”最低求助积分说明 631818
版权声明 602228