化学
超分子化学
催化作用
对映体药物
连接器
对映选择合成
环氧化物
结晶学
组合化学
光化学
晶体结构
有机化学
计算机科学
操作系统
作者
Jingjing Jiao,Chunxia Tan,Zijian Li,Xing Han
摘要
Supramolecular nanoreactors featuring multiple catalytically active sites are of great importance, especially for asymmetric catalysis, and are yet challenging to construct. Here we report the design and assembly of five chiral single- and mixed-linker tetrahedral coordination cages using six dicarboxylate ligands derived-from enantiopure Mn(salen), Cr(salen) and/or Fe(salen) as linear linkers and four Cp3Zr3 clusters as three-connected vertices. The formation of these cages was confirmed by a variety of techniques including single-crystal and powder X-ray diffraction, inductively coupled plasma optical emission spectrometer, quadrupole-time-of-flight mass spectrometry and energy dispersive X-ray spectrometry. The cages feature a nanoscale hydrophobic cavity decorated with the same or different catalytically active sites, and the mixed-linker cage bearing Mn(salen) and Cr(salen) species is shown to be an efficient supramolecular catalyst for sequential asymmetric alkene epoxidation/epoxide ring-opening reactions with up to 99.9% ee. The cage catalyst demonstrates improved activity and enantioselectivity over the free catalysts owing to stabilization of catalytically active metallosalen units and concentration of reactants within the cavity. Manipulation of catalytic organic linkers in cages can control the activities and selectivities, which may provide new opportunities for the design and assembly of novel functional supramolecular architectures.
科研通智能强力驱动
Strongly Powered by AbleSci AI