Differentiating between bipolar and unipolar depression in functional and structural MRI studies

神经科学 心理学 神经影像学 功能磁共振成像 背外侧前额叶皮质 扁桃形结构 前额叶皮质 双相情感障碍 扣带回(脑) 默认模式网络 胼胝体 扣带回前部 后扣带 丘脑 白质 神经功能成像 磁共振成像 认知 医学 放射科 部分各向异性
作者
Kyu‐Man Han,Domenico De Berardis,Michele Fornaro,Yong-Ku Kim
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier]
卷期号:91: 20-27 被引量:164
标识
DOI:10.1016/j.pnpbp.2018.03.022
摘要

Distinguishing depression in bipolar disorder (BD) from unipolar depression (UD) solely based on clinical clues is difficult, which has led to the exploration of promising neural markers in neuroimaging measures for discriminating between BD depression and UD. In this article, we review structural and functional magnetic resonance imaging (MRI) studies that directly compare UD and BD depression based on neuroimaging modalities including functional MRI studies on regional brain activation or functional connectivity, structural MRI on gray or white matter morphology, and pattern classification analyses using a machine learning approach. Numerous studies have reported distinct functional and structural alterations in emotion- or reward-processing neural circuits between BD depression and UD. Different activation patterns in neural networks including the amygdala, anterior cingulate cortex (ACC), prefrontal cortex (PFC), and striatum during emotion-, reward-, or cognition-related tasks have been reported between BD and UD. A stronger functional connectivity pattern in BD was pronounced in default mode and in frontoparietal networks and brain regions including the PFC, ACC, parietal and temporal regions, and thalamus compared to UD. Gray matter volume differences in the ACC, hippocampus, amygdala, and dorsolateral prefrontal cortex (DLPFC) have been reported between BD and UD, along with a thinner DLPFC in BD compared to UD. BD showed reduced integrity in the anterior part of the corpus callosum and posterior cingulum compared to UD. Several studies performed pattern classification analysis using structural and functional MRI data to distinguish between UD and BD depression using a supervised machine learning approach, which yielded a moderate level of accuracy in classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
澜生发布了新的文献求助10
刚刚
在水一方应助惠惠采纳,获得10
刚刚
852应助zZ采纳,获得10
刚刚
小马甲应助陌路采纳,获得10
1秒前
1335804518完成签到 ,获得积分10
2秒前
2秒前
甜甜醉波完成签到,获得积分10
2秒前
科研通AI2S应助卷卷王采纳,获得10
3秒前
可爱的函函应助梦里采纳,获得10
3秒前
沐晴完成签到,获得积分10
4秒前
入夏完成签到,获得积分10
4秒前
4秒前
4秒前
苏州小北发布了新的文献求助10
5秒前
5秒前
snail完成签到,获得积分10
6秒前
劈里啪啦完成签到,获得积分10
6秒前
wanci应助Jasmine采纳,获得10
7秒前
aoxiangcaizi12完成签到,获得积分10
7秒前
ding应助通~采纳,获得30
8秒前
9秒前
Annie发布了新的文献求助10
9秒前
晨曦完成签到,获得积分10
10秒前
十一发布了新的文献求助10
10秒前
顾矜应助Peter采纳,获得30
11秒前
Ayanami完成签到,获得积分10
11秒前
英俊的铭应助ysl采纳,获得30
11秒前
酷波er应助范范采纳,获得10
11秒前
12秒前
Akim应助damian采纳,获得30
12秒前
12秒前
14秒前
番茄炒西红柿完成签到,获得积分10
15秒前
无限安蕾完成签到,获得积分10
15秒前
15秒前
飘逸蘑菇发布了新的文献求助10
16秒前
混沌完成签到,获得积分10
16秒前
16秒前
16秒前
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794