制氢
光催化
催化作用
材料科学
半导体
纳米线
钴
分解水
磷化物
氢
纳米技术
贵金属
密度泛函理论
化学工程
金属
化学
光电子学
计算化学
有机化学
冶金
工程类
生物化学
作者
Pengfei Wang,Sihui Zhan,Haitao Wang,Yuguo Xia,Qianlei Hou,Qixing Zhou,Yi Li,Ramasamy Rajesh Kumar
标识
DOI:10.1016/j.apcatb.2018.02.043
摘要
Previous studies have shown that co-catalysts play a pivotal role for improving both the activity and reliability of semiconductors in photocatalytic hydrogen production, however, designing highly efficient and cost-effective co-catalysts to replace expensive and rare metals is still a big challenge. In this work, DFT (density functional theory) is utilized to guide the application of CoP NWs (nanowires) as an earth-abundant co-catalyst for photocatalytic hydrogen production. Metallic 1D CoP NWs is rationally integrated with Zn0.5Cd0.5S solid solution semiconductor for the first time, to induce a remarkably improved photocatalytic hydrogen production activity of 12,175.8 μmol h−1 g−1, which is 22 times higher than that of the pristine Zn0.5Cd0.5S. This outstanding activity benefits from the collaborative advantages of excellent metallic conductivity and the rigid 1D nanostructure of CoP NWs. Moreover, the mechanism investigations demonstrate that this excellent activity arises from the strong electronic coupling, favourable band structure, highly efficient charge separation and migration based on the powerful characterizations, such as time-resolved PL decay spectra and photoelectrochemical methodology. This work brings new opportunities to employ 1D co-catalysts on photocatalysts for improving the catalytic activities in hydrogen production from water.
科研通智能强力驱动
Strongly Powered by AbleSci AI