Descriptor-Based Approach for the Prediction of Cation Vacancy Formation Energies and Transition Levels

空位缺陷 表征(材料科学) 晶体缺陷 材料科学 点(几何) 电荷(物理) 集合(抽象数据类型) 统计物理学 化学 物理 结晶学 计算机科学 纳米技术 数学 几何学 量子力学 程序设计语言
作者
Joel B. Varley,Amit Samanta,Vincenzo Lordi
出处
期刊:Journal of Physical Chemistry Letters [American Chemical Society]
卷期号:8 (20): 5059-5063 被引量:28
标识
DOI:10.1021/acs.jpclett.7b02333
摘要

Point defects largely determine the observed optical and electrical properties of a given material, yet the characterization and identification of defects has remained a slow and tedious process, both experimentally and theoretically. We demonstrate a computationally-cheap model that can reliably predict the formation energies of cation vacancies as well as the location of their electronic states in a large set of II-VI and III-V materials using only parameters obtained from the bulk primitive unit cell (2-4 atoms). We apply our model to ordered alloys within the CdZnSeTe, CdZnS, and ZnMgO systems and predict the positions of cation vacancy charge-state transition levels with a mean absolute error of < 0.2 eV compared to the explicitly calculated values, showing useful accuracy without the need for the expensive and large-scale calculations typically required. This suggests the properties of other point defects may also be predicted with useful accuracy from only bulk-derived properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助落落采纳,获得10
2秒前
67发布了新的文献求助10
2秒前
2秒前
溜溜完成签到,获得积分10
2秒前
xixi完成签到 ,获得积分10
3秒前
wanci应助科研通管家采纳,获得10
3秒前
撒上咖啡应助科研通管家采纳,获得10
3秒前
RC_Wang应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
琪琪扬扬发布了新的文献求助10
3秒前
sutharsons应助科研通管家采纳,获得30
3秒前
orixero应助科研通管家采纳,获得10
4秒前
研友_VZG7GZ应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
清爽老九应助科研通管家采纳,获得20
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
wanci应助科研通管家采纳,获得10
4秒前
香蕉觅云应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
hui发布了新的文献求助30
4秒前
传奇3应助科研通管家采纳,获得10
4秒前
4秒前
领导范儿应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
5秒前
迟大猫应助若狂采纳,获得10
5秒前
11111发布了新的文献求助30
5秒前
溜溜发布了新的文献求助10
6秒前
7秒前
wanli445完成签到,获得积分10
8秒前
科研通AI2S应助satchzhao采纳,获得10
8秒前
是小程啊完成签到 ,获得积分10
8秒前
琪琪扬扬完成签到,获得积分10
9秒前
11111完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
11秒前
fatal完成签到,获得积分10
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808