Constrained Convolutional Neural Networks: A New Approach Towards General Purpose Image Manipulation Detection

计算机科学 卷积神经网络 人工智能 过程(计算) 图像(数学) 深度学习 任务(项目管理) 探测器 机器学习 上下文图像分类 模式识别(心理学) 特征提取 电信 操作系统 经济 管理
作者
Belhassen Bayar,Matthew C. Stamm
出处
期刊:IEEE Transactions on Information Forensics and Security [Institute of Electrical and Electronics Engineers]
卷期号:13 (11): 2691-2706 被引量:468
标识
DOI:10.1109/tifs.2018.2825953
摘要

Identifying the authenticity and processing history of an image is an important task in multimedia forensics. By analyzing traces left by different image manipulations, researchers have been able to develop several algorithms capable of detecting targeted editing operations. While this approach has led to the development of several successful forensic algorithms, an important problem remains: creating forensic detectors for different image manipulations is a difficult and time consuming process. Furthermore, forensic analysts need general purpose forensic algorithms capable of detecting multiple different image manipulations. In this paper, we address both of these problems by proposing a new general purpose forensic approach using convolutional neural networks (CNNs). While CNNs are capable of learning classification features directly from data, in their existing form they tend to learn features representative of an image's content. To overcome this issue, we have developed a new type of CNN layer, called a constrained convolutional layer, that is able to jointly suppress an image's content and adaptively learn manipulation detection features. Through a series of experiments, we show that our proposed constrained CNN is able to learn manipulation detection features directly from data. Our experimental results demonstrate that our CNN can detect multiple different editing operations with up to 99.97% accuracy and outperform the existing state-of-the-art general purpose manipulation detector. Furthermore, our constrained CNN can still accurately detect image manipulations in realistic scenarios where there is a source camera model mismatch between the training and testing data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张张完成签到 ,获得积分10
1秒前
顾矜应助文子采纳,获得10
2秒前
Stair发布了新的文献求助10
4秒前
5秒前
鲤鱼鸽子应助Cassie采纳,获得10
5秒前
5秒前
川流与行云完成签到,获得积分10
5秒前
Augenstern发布了新的文献求助10
5秒前
叶远望发布了新的文献求助10
7秒前
lcxszsd发布了新的文献求助10
9秒前
科研的神龙猫完成签到,获得积分10
9秒前
小小K发布了新的文献求助10
9秒前
彭于晏应助谢峥嵘采纳,获得10
9秒前
10秒前
Ha La La La发布了新的文献求助10
11秒前
华仔应助大邱白菜采纳,获得10
12秒前
斯南完成签到,获得积分10
13秒前
14秒前
15秒前
小小K完成签到,获得积分20
15秒前
量子星尘发布了新的文献求助10
17秒前
Stair完成签到,获得积分10
18秒前
善学以致用应助叶远望采纳,获得10
18秒前
19秒前
19秒前
小晚风完成签到,获得积分10
20秒前
菠萝派发布了新的文献求助10
20秒前
112233完成签到,获得积分20
21秒前
atonnng完成签到,获得积分10
22秒前
23秒前
May完成签到 ,获得积分10
24秒前
24秒前
jianglili发布了新的文献求助10
25秒前
28秒前
28秒前
29秒前
30秒前
31秒前
34秒前
112233发布了新的文献求助30
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956068
求助须知:如何正确求助?哪些是违规求助? 3502250
关于积分的说明 11106925
捐赠科研通 3232714
什么是DOI,文献DOI怎么找? 1787067
邀请新用户注册赠送积分活动 870375
科研通“疑难数据库(出版商)”最低求助积分说明 801994