Ultrafast optical spectroscopy of high-temperature superconductors

超短脉冲 光谱学 高温超导 材料科学 超导电性 光电子学 凝聚态物理 物理 光学 激光器 量子力学
作者
Qiong Wu,Yichao Tian,Yanling Wu,Jimin Zhao
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:62 (34): 3995-4009 被引量:2
标识
DOI:10.1360/n972017-00816
摘要

The mechanism of high-temperature superconductivity is still an unsolved mystery in physics, and it is the ″pearl in the crown″ of condensed matter physics. Among the numerous optical methods investigating superconductors, ultrafast spectroscopy is one of the most exquisite methods and the most powerful control means. It can interact with superconductors in all the charge, lattice, spin and orbital degrees of freedom. It can probe the excited state of superconductors. It can uniquely realize investigations of the ultrafast processes of quasiparticles, the coherence control of lattices, electron-phonon coupling strength, and the interface superconductivity. Here we briefly review the ultrafast optical spectroscopy (especially the ultrafast dynamics) investigations of high temperature superconductors, with concrete examples. Particularly, we demonstrate the unique virtues of this experimental method in the observation and realization of quasiparticle excited states, bosonic coherent states, laser-induced superconductivity, and interface superconductivity. We give the prospect of this area at the end. The complexity, profundity and serendipity of superconductivity quite much root in its bridging between both fermions and bosons in the condensed matters—a solid universe. Ultrafast spectroscopy can probe both the electrons and bosonic collective elementary excitations, thus making it feasible for revealing the superconducting mechanism. The time-resolved measurements provide direct evidences of the superconducting Bose-Einstein condensate and clues to distinguish it from the pseudogaps, charge density waves, spin density waves, etc. Delicate ultrafast spectroscopy investigations can also yield testifying information on the gap symmetry, including whether there is a nodal line in the system. The electron-phonon coupling constant can be obtained by directly observing the quasiparticle relaxation, which usually occurs at picosecond scales and marks the rate of energy transferring among carriers and phonons—a direct reflection of electron-coupling strength. The unique way of generating and detection coherent phonons in a solid adds another way of looking into the lattice behavior in a superconductor—if it is phonon glue, which mode plays the major role? The aforementioned methods have been used to study all the cuprates, iron-based superconductors, and interface single-layer superconductors. Furthermore, ultrafast laser pulse can act as a natural controlling tool. It is known photo-doping can be more efficient than chemical doping in some situations, but more dramatically, ultrafast light pulses can induce superconducting phenomenon in a non-superconducting system with even room temperature T c. Since the superconducting feature occurs and evolves in picoseconds, this transient superconductivity can only be observed using ultrafast spectroscopy. This excited state superconductivity is a concrete example of the importance of excited state in superconductivity investigation. The accessibility for ultrafast spectroscopy to excited states (non-equilibrium quantum states) making it an exceptionally feasible experimental means among the all in such investigations. Currently, ultrafast spectroscopy is extending to the THz and mid-IR range to resonantly probe the narrow gaps or phonon excitation, to the X-ray range (RIXS) to achieve momentum-resolved information of bosonic excitations, to adding angle-resolved photoemission spectroscopy to access the momentum-resolved electronic features, to adding Transmission Electron Microscopy (TEM), Scanning Tunnel Microscope (STM) or Scanning Nearfield Optical Microscope (SNOM) for spatially-resolved properties, etc. We foresee that ultrafast spectroscopy of superconductors is going to be mature area in 30 years. During this period, it is going to proceed in a foreseeable way marked by the aforementioned science problems and physics techniques, and in an un-foreseeable way marked by novel exciting results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linkman发布了新的文献求助10
刚刚
刚刚
1秒前
路由器完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
打打应助Solitude采纳,获得10
2秒前
muzi发布了新的文献求助10
3秒前
An发布了新的文献求助10
5秒前
5秒前
李健应助li采纳,获得10
6秒前
嗯哈完成签到 ,获得积分10
6秒前
8秒前
悦耳黑夜发布了新的文献求助10
8秒前
akan完成签到 ,获得积分10
9秒前
充电宝应助傻傻的凌寒采纳,获得10
9秒前
wuxunxun2015发布了新的文献求助10
10秒前
orixero应助SONG采纳,获得10
11秒前
PWF完成签到,获得积分10
12秒前
香蕉觅云应助高贵的迎蕾采纳,获得10
14秒前
14秒前
yaoyaoya完成签到 ,获得积分10
15秒前
开心平安完成签到,获得积分10
15秒前
李健的小迷弟应助Loststar采纳,获得10
15秒前
18秒前
脑洞疼应助涛哥采纳,获得10
19秒前
充电宝应助SONG采纳,获得10
19秒前
TayBob完成签到,获得积分10
21秒前
wuwuwuwu发布了新的文献求助10
21秒前
Zx_1993应助Snoopy采纳,获得50
22秒前
22秒前
22秒前
23秒前
baoxiaozhai完成签到 ,获得积分10
23秒前
23秒前
彭于晏应助闪闪穆采纳,获得10
23秒前
24秒前
lvzhigang发布了新的文献求助10
24秒前
一二发布了新的文献求助10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598772
求助须知:如何正确求助?哪些是违规求助? 4684180
关于积分的说明 14834106
捐赠科研通 4664702
什么是DOI,文献DOI怎么找? 2537384
邀请新用户注册赠送积分活动 1504909
关于科研通互助平台的介绍 1470606