Ultrafast optical spectroscopy of high-temperature superconductors

超短脉冲 光谱学 高温超导 材料科学 超导电性 光电子学 凝聚态物理 物理 光学 激光器 量子力学
作者
Qiong Wu,Yichao Tian,Yanling Wu,Jimin Zhao
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:62 (34): 3995-4009 被引量:1
标识
DOI:10.1360/n972017-00816
摘要

The mechanism of high-temperature superconductivity is still an unsolved mystery in physics, and it is the ″pearl in the crown″ of condensed matter physics. Among the numerous optical methods investigating superconductors, ultrafast spectroscopy is one of the most exquisite methods and the most powerful control means. It can interact with superconductors in all the charge, lattice, spin and orbital degrees of freedom. It can probe the excited state of superconductors. It can uniquely realize investigations of the ultrafast processes of quasiparticles, the coherence control of lattices, electron-phonon coupling strength, and the interface superconductivity. Here we briefly review the ultrafast optical spectroscopy (especially the ultrafast dynamics) investigations of high temperature superconductors, with concrete examples. Particularly, we demonstrate the unique virtues of this experimental method in the observation and realization of quasiparticle excited states, bosonic coherent states, laser-induced superconductivity, and interface superconductivity. We give the prospect of this area at the end. The complexity, profundity and serendipity of superconductivity quite much root in its bridging between both fermions and bosons in the condensed matters—a solid universe. Ultrafast spectroscopy can probe both the electrons and bosonic collective elementary excitations, thus making it feasible for revealing the superconducting mechanism. The time-resolved measurements provide direct evidences of the superconducting Bose-Einstein condensate and clues to distinguish it from the pseudogaps, charge density waves, spin density waves, etc. Delicate ultrafast spectroscopy investigations can also yield testifying information on the gap symmetry, including whether there is a nodal line in the system. The electron-phonon coupling constant can be obtained by directly observing the quasiparticle relaxation, which usually occurs at picosecond scales and marks the rate of energy transferring among carriers and phonons—a direct reflection of electron-coupling strength. The unique way of generating and detection coherent phonons in a solid adds another way of looking into the lattice behavior in a superconductor—if it is phonon glue, which mode plays the major role? The aforementioned methods have been used to study all the cuprates, iron-based superconductors, and interface single-layer superconductors. Furthermore, ultrafast laser pulse can act as a natural controlling tool. It is known photo-doping can be more efficient than chemical doping in some situations, but more dramatically, ultrafast light pulses can induce superconducting phenomenon in a non-superconducting system with even room temperature T c. Since the superconducting feature occurs and evolves in picoseconds, this transient superconductivity can only be observed using ultrafast spectroscopy. This excited state superconductivity is a concrete example of the importance of excited state in superconductivity investigation. The accessibility for ultrafast spectroscopy to excited states (non-equilibrium quantum states) making it an exceptionally feasible experimental means among the all in such investigations. Currently, ultrafast spectroscopy is extending to the THz and mid-IR range to resonantly probe the narrow gaps or phonon excitation, to the X-ray range (RIXS) to achieve momentum-resolved information of bosonic excitations, to adding angle-resolved photoemission spectroscopy to access the momentum-resolved electronic features, to adding Transmission Electron Microscopy (TEM), Scanning Tunnel Microscope (STM) or Scanning Nearfield Optical Microscope (SNOM) for spatially-resolved properties, etc. We foresee that ultrafast spectroscopy of superconductors is going to be mature area in 30 years. During this period, it is going to proceed in a foreseeable way marked by the aforementioned science problems and physics techniques, and in an un-foreseeable way marked by novel exciting results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
holi完成签到 ,获得积分10
1秒前
寒冷的如南完成签到,获得积分10
2秒前
CodeCraft应助Zyou采纳,获得10
3秒前
3秒前
814791097完成签到,获得积分10
5秒前
吱吱发布了新的文献求助10
8秒前
9秒前
boom完成签到,获得积分10
9秒前
9秒前
星辰完成签到 ,获得积分10
11秒前
11秒前
11秒前
11秒前
12秒前
JMrider完成签到,获得积分10
13秒前
汉堡包应助xiax03采纳,获得10
13秒前
wu发布了新的文献求助10
14秒前
达菲完成签到,获得积分10
15秒前
mjf111发布了新的文献求助10
15秒前
HYT发布了新的文献求助10
15秒前
16秒前
17秒前
小羊发布了新的文献求助10
17秒前
NexusExplorer应助Nienie采纳,获得10
17秒前
CipherSage应助风中浩天采纳,获得10
17秒前
ardejiang发布了新的文献求助10
18秒前
aaron9898发布了新的文献求助10
19秒前
Daniel完成签到,获得积分10
19秒前
江河湖海关注了科研通微信公众号
19秒前
IKARUTO发布了新的文献求助10
20秒前
22秒前
桐桐应助顺利的雅绿采纳,获得10
22秒前
丰盛的煎饼应助123采纳,获得10
24秒前
aaron9898完成签到,获得积分10
24秒前
ffffan完成签到,获得积分10
24秒前
25秒前
26秒前
小麦完成签到,获得积分10
26秒前
深情安青应助蛋堡采纳,获得10
26秒前
27秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157384
求助须知:如何正确求助?哪些是违规求助? 2808832
关于积分的说明 7878535
捐赠科研通 2467168
什么是DOI,文献DOI怎么找? 1313255
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919