Ultrafast optical spectroscopy of high-temperature superconductors

超短脉冲 光谱学 高温超导 材料科学 超导电性 光电子学 凝聚态物理 物理 光学 激光器 量子力学
作者
Qiong Wu,Yichao Tian,Yanling Wu,Jimin Zhao
出处
期刊:Kexue tongbao [Science China Press]
卷期号:62 (34): 3995-4009 被引量:2
标识
DOI:10.1360/n972017-00816
摘要

The mechanism of high-temperature superconductivity is still an unsolved mystery in physics, and it is the ″pearl in the crown″ of condensed matter physics. Among the numerous optical methods investigating superconductors, ultrafast spectroscopy is one of the most exquisite methods and the most powerful control means. It can interact with superconductors in all the charge, lattice, spin and orbital degrees of freedom. It can probe the excited state of superconductors. It can uniquely realize investigations of the ultrafast processes of quasiparticles, the coherence control of lattices, electron-phonon coupling strength, and the interface superconductivity. Here we briefly review the ultrafast optical spectroscopy (especially the ultrafast dynamics) investigations of high temperature superconductors, with concrete examples. Particularly, we demonstrate the unique virtues of this experimental method in the observation and realization of quasiparticle excited states, bosonic coherent states, laser-induced superconductivity, and interface superconductivity. We give the prospect of this area at the end. The complexity, profundity and serendipity of superconductivity quite much root in its bridging between both fermions and bosons in the condensed matters—a solid universe. Ultrafast spectroscopy can probe both the electrons and bosonic collective elementary excitations, thus making it feasible for revealing the superconducting mechanism. The time-resolved measurements provide direct evidences of the superconducting Bose-Einstein condensate and clues to distinguish it from the pseudogaps, charge density waves, spin density waves, etc. Delicate ultrafast spectroscopy investigations can also yield testifying information on the gap symmetry, including whether there is a nodal line in the system. The electron-phonon coupling constant can be obtained by directly observing the quasiparticle relaxation, which usually occurs at picosecond scales and marks the rate of energy transferring among carriers and phonons—a direct reflection of electron-coupling strength. The unique way of generating and detection coherent phonons in a solid adds another way of looking into the lattice behavior in a superconductor—if it is phonon glue, which mode plays the major role? The aforementioned methods have been used to study all the cuprates, iron-based superconductors, and interface single-layer superconductors. Furthermore, ultrafast laser pulse can act as a natural controlling tool. It is known photo-doping can be more efficient than chemical doping in some situations, but more dramatically, ultrafast light pulses can induce superconducting phenomenon in a non-superconducting system with even room temperature T c. Since the superconducting feature occurs and evolves in picoseconds, this transient superconductivity can only be observed using ultrafast spectroscopy. This excited state superconductivity is a concrete example of the importance of excited state in superconductivity investigation. The accessibility for ultrafast spectroscopy to excited states (non-equilibrium quantum states) making it an exceptionally feasible experimental means among the all in such investigations. Currently, ultrafast spectroscopy is extending to the THz and mid-IR range to resonantly probe the narrow gaps or phonon excitation, to the X-ray range (RIXS) to achieve momentum-resolved information of bosonic excitations, to adding angle-resolved photoemission spectroscopy to access the momentum-resolved electronic features, to adding Transmission Electron Microscopy (TEM), Scanning Tunnel Microscope (STM) or Scanning Nearfield Optical Microscope (SNOM) for spatially-resolved properties, etc. We foresee that ultrafast spectroscopy of superconductors is going to be mature area in 30 years. During this period, it is going to proceed in a foreseeable way marked by the aforementioned science problems and physics techniques, and in an un-foreseeable way marked by novel exciting results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
猫丫完成签到,获得积分10
1秒前
orixero应助力量采纳,获得10
2秒前
RjqHy发布了新的文献求助10
3秒前
3秒前
小猫多鱼完成签到,获得积分10
3秒前
997完成签到,获得积分10
3秒前
4秒前
乐乐应助jcc采纳,获得10
5秒前
科研人发布了新的文献求助20
5秒前
Nina完成签到,获得积分10
5秒前
6秒前
晨曦应助前行的灿采纳,获得20
7秒前
styz11发布了新的文献求助10
7秒前
MeiLing完成签到,获得积分10
8秒前
西门放狗发布了新的文献求助10
8秒前
年轻迪奥发布了新的文献求助10
9秒前
白泽发布了新的文献求助30
9秒前
9秒前
10秒前
wefor发布了新的文献求助10
10秒前
11秒前
量子星尘发布了新的文献求助150
11秒前
12秒前
蔡蔡不菜菜完成签到,获得积分10
12秒前
彩色的访天完成签到,获得积分10
13秒前
小二郎应助997采纳,获得10
13秒前
赵纤完成签到,获得积分10
13秒前
英俊的铭应助静静等待采纳,获得10
14秒前
小二郎应助昭和的joker采纳,获得10
14秒前
14秒前
TTT发布了新的文献求助10
16秒前
翟函完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
17秒前
18秒前
充电宝应助木直采纳,获得10
18秒前
Winkhl完成签到,获得积分20
18秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954162
求助须知:如何正确求助?哪些是违规求助? 3500172
关于积分的说明 11098313
捐赠科研通 3230649
什么是DOI,文献DOI怎么找? 1786063
邀请新用户注册赠送积分活动 869805
科研通“疑难数据库(出版商)”最低求助积分说明 801609