Ultrafast optical spectroscopy of high-temperature superconductors

超短脉冲 光谱学 高温超导 材料科学 超导电性 光电子学 凝聚态物理 物理 光学 激光器 量子力学
作者
Qiong Wu,Yichao Tian,Yanling Wu,Jimin Zhao
出处
期刊:Kexue tongbao [Science in China Press]
卷期号:62 (34): 3995-4009 被引量:2
标识
DOI:10.1360/n972017-00816
摘要

The mechanism of high-temperature superconductivity is still an unsolved mystery in physics, and it is the ″pearl in the crown″ of condensed matter physics. Among the numerous optical methods investigating superconductors, ultrafast spectroscopy is one of the most exquisite methods and the most powerful control means. It can interact with superconductors in all the charge, lattice, spin and orbital degrees of freedom. It can probe the excited state of superconductors. It can uniquely realize investigations of the ultrafast processes of quasiparticles, the coherence control of lattices, electron-phonon coupling strength, and the interface superconductivity. Here we briefly review the ultrafast optical spectroscopy (especially the ultrafast dynamics) investigations of high temperature superconductors, with concrete examples. Particularly, we demonstrate the unique virtues of this experimental method in the observation and realization of quasiparticle excited states, bosonic coherent states, laser-induced superconductivity, and interface superconductivity. We give the prospect of this area at the end. The complexity, profundity and serendipity of superconductivity quite much root in its bridging between both fermions and bosons in the condensed matters—a solid universe. Ultrafast spectroscopy can probe both the electrons and bosonic collective elementary excitations, thus making it feasible for revealing the superconducting mechanism. The time-resolved measurements provide direct evidences of the superconducting Bose-Einstein condensate and clues to distinguish it from the pseudogaps, charge density waves, spin density waves, etc. Delicate ultrafast spectroscopy investigations can also yield testifying information on the gap symmetry, including whether there is a nodal line in the system. The electron-phonon coupling constant can be obtained by directly observing the quasiparticle relaxation, which usually occurs at picosecond scales and marks the rate of energy transferring among carriers and phonons—a direct reflection of electron-coupling strength. The unique way of generating and detection coherent phonons in a solid adds another way of looking into the lattice behavior in a superconductor—if it is phonon glue, which mode plays the major role? The aforementioned methods have been used to study all the cuprates, iron-based superconductors, and interface single-layer superconductors. Furthermore, ultrafast laser pulse can act as a natural controlling tool. It is known photo-doping can be more efficient than chemical doping in some situations, but more dramatically, ultrafast light pulses can induce superconducting phenomenon in a non-superconducting system with even room temperature T c. Since the superconducting feature occurs and evolves in picoseconds, this transient superconductivity can only be observed using ultrafast spectroscopy. This excited state superconductivity is a concrete example of the importance of excited state in superconductivity investigation. The accessibility for ultrafast spectroscopy to excited states (non-equilibrium quantum states) making it an exceptionally feasible experimental means among the all in such investigations. Currently, ultrafast spectroscopy is extending to the THz and mid-IR range to resonantly probe the narrow gaps or phonon excitation, to the X-ray range (RIXS) to achieve momentum-resolved information of bosonic excitations, to adding angle-resolved photoemission spectroscopy to access the momentum-resolved electronic features, to adding Transmission Electron Microscopy (TEM), Scanning Tunnel Microscope (STM) or Scanning Nearfield Optical Microscope (SNOM) for spatially-resolved properties, etc. We foresee that ultrafast spectroscopy of superconductors is going to be mature area in 30 years. During this period, it is going to proceed in a foreseeable way marked by the aforementioned science problems and physics techniques, and in an un-foreseeable way marked by novel exciting results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CooLIT发布了新的文献求助10
1秒前
刘霞完成签到,获得积分10
1秒前
Mr祥完成签到,获得积分10
1秒前
胖虎的老张完成签到,获得积分10
1秒前
米米米完成签到,获得积分10
1秒前
孤独问旋完成签到,获得积分10
2秒前
大个应助豌豆射手采纳,获得10
2秒前
YING完成签到,获得积分10
3秒前
小杭76应助优雅的砖头采纳,获得10
3秒前
机智跳跳糖完成签到,获得积分10
3秒前
充电宝应助果称采纳,获得10
3秒前
眼睛大的可乐完成签到,获得积分10
4秒前
ppppp完成签到,获得积分20
4秒前
4秒前
lalala应助QIQI采纳,获得10
4秒前
清爽猕猴桃完成签到,获得积分20
5秒前
含糊的衬衫完成签到 ,获得积分20
5秒前
爱哭的小女孩完成签到,获得积分10
5秒前
5秒前
梦槐完成签到,获得积分10
6秒前
吕君完成签到,获得积分10
6秒前
anan应助竹林风箫采纳,获得10
7秒前
7秒前
依然小爽完成签到,获得积分10
7秒前
8秒前
Cy完成签到,获得积分10
8秒前
乐观的海发布了新的文献求助10
9秒前
NexusExplorer应助勤劳寒烟采纳,获得10
10秒前
10秒前
YUMMY发布了新的文献求助10
10秒前
11秒前
nancylan应助CooLIT采纳,获得10
11秒前
11秒前
orixero应助糟糕的秋白采纳,获得10
11秒前
GG完成签到,获得积分10
12秒前
12秒前
斯文白梦完成签到,获得积分10
12秒前
yy发布了新的文献求助10
13秒前
清心淡如水完成签到 ,获得积分10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Investigative Interviewing: Psychology and Practice 300
Atlas of Anatomy (Fifth Edition) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5286904
求助须知:如何正确求助?哪些是违规求助? 4439441
关于积分的说明 13821830
捐赠科研通 4321463
什么是DOI,文献DOI怎么找? 2371969
邀请新用户注册赠送积分活动 1367463
关于科研通互助平台的介绍 1330923