钙钛矿(结构)
化学
理论(学习稳定性)
化学工程
结晶学
计算机科学
机器学习
工程类
作者
Jia Liang,Peiyang Zhao,Caixing Wang,Yanrong Wang,Yi Hu,Guoyin Zhu,Lianbo Ma,Jie Liu,Lin Zhong
摘要
The emergence of perovskite solar cells (PSCs) has generated enormous interest in the photovoltaic research community. Recently, cesium metal halides (CsMX3, M = Pb or Sn; X = I, Br, Cl or mixed halides) as a class of inorganic perovskites showed great promise for PSCs and other optoelectronic devices. However, CsMX3-based PSCs usually exhibit lower power conversion efficiencies (PCEs) than organic-inorganic hybrid PSCs, due to the unfavorable band gaps. Herein, a novel mixed-Pb/Sn mixed-halide inorganic perovskite, CsPb0.9Sn0.1IBr2, with a suitable band gap of 1.79 eV and an appropriate level of valence band maximum, was prepared in ambient atmosphere without a glovebox. After thoroughly eliminating labile organic components and noble metals, the all-inorganic PSCs based on CsPb0.9Sn0.1IBr2 and carbon counter electrodes exhibit a high open-circuit voltage of 1.26 V and a remarkable PCE up to 11.33%, which is record-breaking among the existing CsMX3-based PSCs. Moreover, the all-inorganic PSCs show good long-term stability and improved endurance against heat and moisture. This study indicates a feasible way to design inorganic halide perovskites through energy-band engineering for the construction of high-performance all-inorganic PSCs.
科研通智能强力驱动
Strongly Powered by AbleSci AI