亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy

结肠镜检查 卷积神经网络 医学 人工智能 腺瘤 大肠息肉 深度学习 结直肠癌 人口 接收机工作特性 内科学 计算机科学 胃肠病学 癌症 环境卫生
作者
Gregor Urban,Priyam Tripathi,Talal Alkayali,Mohit Mittal,Farid Jalali,William E. Karnes,Pierre Baldi
出处
期刊:Gastroenterology [Elsevier BV]
卷期号:155 (4): 1069-1078.e8 被引量:622
标识
DOI:10.1053/j.gastro.2018.06.037
摘要

Background & AimsThe benefit of colonoscopy for colorectal cancer prevention depends on the adenoma detection rate (ADR). The ADR should reflect the adenoma prevalence rate, which is estimated to be higher than 50% in the screening-age population. However, the ADR by colonoscopists varies from 7% to 53%. It is estimated that every 1% increase in ADR lowers the risk of interval colorectal cancers by 3%–6%. New strategies are needed to increase the ADR during colonoscopy. We tested the ability of computer-assisted image analysis using convolutional neural networks (CNNs; a deep learning model for image analysis) to improve polyp detection, a surrogate of ADR.MethodsWe designed and trained deep CNNs to detect polyps using a diverse and representative set of 8,641 hand-labeled images from screening colonoscopies collected from more than 2000 patients. We tested the models on 20 colonoscopy videos with a total duration of 5 hours. Expert colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, which were selected from archived video studies, with or without benefit of the CNN overlay. Their findings were compared with those of the CNN using CNN-assisted expert review as the reference.ResultsWhen tested on manually labeled images, the CNN identified polyps with an area under the receiver operating characteristic curve of 0.991 and an accuracy of 96.4%. In the analysis of colonoscopy videos in which 28 polyps were removed, 4 expert reviewers identified 8 additional polyps without CNN assistance that had not been removed and identified an additional 17 polyps with CNN assistance (45 in total). All polyps removed and identified by expert review were detected by the CNN. The CNN had a false-positive rate of 7%.ConclusionIn a set of 8,641 colonoscopy images containing 4,088 unique polyps, the CNN identified polyps with a cross-validation accuracy of 96.4% and an area under the receiver operating characteristic curve of 0.991. The CNN system detected and localized polyps well within real-time constraints using an ordinary desktop machine with a contemporary graphics processing unit. This system could increase the ADR and decrease interval colorectal cancers but requires validation in large multicenter trials. The benefit of colonoscopy for colorectal cancer prevention depends on the adenoma detection rate (ADR). The ADR should reflect the adenoma prevalence rate, which is estimated to be higher than 50% in the screening-age population. However, the ADR by colonoscopists varies from 7% to 53%. It is estimated that every 1% increase in ADR lowers the risk of interval colorectal cancers by 3%–6%. New strategies are needed to increase the ADR during colonoscopy. We tested the ability of computer-assisted image analysis using convolutional neural networks (CNNs; a deep learning model for image analysis) to improve polyp detection, a surrogate of ADR. We designed and trained deep CNNs to detect polyps using a diverse and representative set of 8,641 hand-labeled images from screening colonoscopies collected from more than 2000 patients. We tested the models on 20 colonoscopy videos with a total duration of 5 hours. Expert colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, which were selected from archived video studies, with or without benefit of the CNN overlay. Their findings were compared with those of the CNN using CNN-assisted expert review as the reference. When tested on manually labeled images, the CNN identified polyps with an area under the receiver operating characteristic curve of 0.991 and an accuracy of 96.4%. In the analysis of colonoscopy videos in which 28 polyps were removed, 4 expert reviewers identified 8 additional polyps without CNN assistance that had not been removed and identified an additional 17 polyps with CNN assistance (45 in total). All polyps removed and identified by expert review were detected by the CNN. The CNN had a false-positive rate of 7%. In a set of 8,641 colonoscopy images containing 4,088 unique polyps, the CNN identified polyps with a cross-validation accuracy of 96.4% and an area under the receiver operating characteristic curve of 0.991. The CNN system detected and localized polyps well within real-time constraints using an ordinary desktop machine with a contemporary graphics processing unit. This system could increase the ADR and decrease interval colorectal cancers but requires validation in large multicenter trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZHANG完成签到 ,获得积分10
14秒前
tenta完成签到,获得积分10
15秒前
48秒前
50秒前
57秒前
千里草完成签到,获得积分10
58秒前
彭日晓发布了新的文献求助10
1分钟前
significant发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
忍忍发布了新的文献求助30
2分钟前
kingcoffee完成签到 ,获得积分10
2分钟前
忍忍完成签到 ,获得积分10
2分钟前
彭日晓完成签到,获得积分10
3分钟前
4分钟前
靓丽的熠彤完成签到,获得积分10
4分钟前
4分钟前
sho完成签到,获得积分10
5分钟前
5分钟前
6分钟前
6分钟前
6分钟前
Ysn完成签到,获得积分10
6分钟前
MchemG应助科研通管家采纳,获得10
6分钟前
Lny发布了新的文献求助20
7分钟前
7分钟前
slayers完成签到 ,获得积分10
8分钟前
8分钟前
story发布了新的文献求助30
8分钟前
8分钟前
Owen应助光亮雁玉采纳,获得10
8分钟前
SL完成签到,获得积分10
8分钟前
乐乐应助story采纳,获得10
9分钟前
科研通AI5应助光亮雁玉采纳,获得10
9分钟前
9分钟前
爆米花应助光亮雁玉采纳,获得10
9分钟前
Lny发布了新的文献求助20
9分钟前
冰西瓜完成签到 ,获得积分0
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Founding Fathers The Shaping of America 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 460
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4569031
求助须知:如何正确求助?哪些是违规求助? 3991376
关于积分的说明 12355741
捐赠科研通 3663539
什么是DOI,文献DOI怎么找? 2018986
邀请新用户注册赠送积分活动 1053396
科研通“疑难数据库(出版商)”最低求助积分说明 940955