已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy

结肠镜检查 卷积神经网络 医学 人工智能 腺瘤 大肠息肉 深度学习 结直肠癌 人口 接收机工作特性 内科学 计算机科学 胃肠病学 癌症 环境卫生
作者
Gregor Urban,Priyam Tripathi,Talal Alkayali,Mohit Mittal,Farid Jalali,William E. Karnes,Pierre Baldi
出处
期刊:Gastroenterology [Elsevier]
卷期号:155 (4): 1069-1078.e8 被引量:507
标识
DOI:10.1053/j.gastro.2018.06.037
摘要

Background & AimsThe benefit of colonoscopy for colorectal cancer prevention depends on the adenoma detection rate (ADR). The ADR should reflect the adenoma prevalence rate, which is estimated to be higher than 50% in the screening-age population. However, the ADR by colonoscopists varies from 7% to 53%. It is estimated that every 1% increase in ADR lowers the risk of interval colorectal cancers by 3%–6%. New strategies are needed to increase the ADR during colonoscopy. We tested the ability of computer-assisted image analysis using convolutional neural networks (CNNs; a deep learning model for image analysis) to improve polyp detection, a surrogate of ADR.MethodsWe designed and trained deep CNNs to detect polyps using a diverse and representative set of 8,641 hand-labeled images from screening colonoscopies collected from more than 2000 patients. We tested the models on 20 colonoscopy videos with a total duration of 5 hours. Expert colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, which were selected from archived video studies, with or without benefit of the CNN overlay. Their findings were compared with those of the CNN using CNN-assisted expert review as the reference.ResultsWhen tested on manually labeled images, the CNN identified polyps with an area under the receiver operating characteristic curve of 0.991 and an accuracy of 96.4%. In the analysis of colonoscopy videos in which 28 polyps were removed, 4 expert reviewers identified 8 additional polyps without CNN assistance that had not been removed and identified an additional 17 polyps with CNN assistance (45 in total). All polyps removed and identified by expert review were detected by the CNN. The CNN had a false-positive rate of 7%.ConclusionIn a set of 8,641 colonoscopy images containing 4,088 unique polyps, the CNN identified polyps with a cross-validation accuracy of 96.4% and an area under the receiver operating characteristic curve of 0.991. The CNN system detected and localized polyps well within real-time constraints using an ordinary desktop machine with a contemporary graphics processing unit. This system could increase the ADR and decrease interval colorectal cancers but requires validation in large multicenter trials. The benefit of colonoscopy for colorectal cancer prevention depends on the adenoma detection rate (ADR). The ADR should reflect the adenoma prevalence rate, which is estimated to be higher than 50% in the screening-age population. However, the ADR by colonoscopists varies from 7% to 53%. It is estimated that every 1% increase in ADR lowers the risk of interval colorectal cancers by 3%–6%. New strategies are needed to increase the ADR during colonoscopy. We tested the ability of computer-assisted image analysis using convolutional neural networks (CNNs; a deep learning model for image analysis) to improve polyp detection, a surrogate of ADR. We designed and trained deep CNNs to detect polyps using a diverse and representative set of 8,641 hand-labeled images from screening colonoscopies collected from more than 2000 patients. We tested the models on 20 colonoscopy videos with a total duration of 5 hours. Expert colonoscopists were asked to identify all polyps in 9 de-identified colonoscopy videos, which were selected from archived video studies, with or without benefit of the CNN overlay. Their findings were compared with those of the CNN using CNN-assisted expert review as the reference. When tested on manually labeled images, the CNN identified polyps with an area under the receiver operating characteristic curve of 0.991 and an accuracy of 96.4%. In the analysis of colonoscopy videos in which 28 polyps were removed, 4 expert reviewers identified 8 additional polyps without CNN assistance that had not been removed and identified an additional 17 polyps with CNN assistance (45 in total). All polyps removed and identified by expert review were detected by the CNN. The CNN had a false-positive rate of 7%. In a set of 8,641 colonoscopy images containing 4,088 unique polyps, the CNN identified polyps with a cross-validation accuracy of 96.4% and an area under the receiver operating characteristic curve of 0.991. The CNN system detected and localized polyps well within real-time constraints using an ordinary desktop machine with a contemporary graphics processing unit. This system could increase the ADR and decrease interval colorectal cancers but requires validation in large multicenter trials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lvzhechen发布了新的文献求助10
1秒前
程乾发布了新的文献求助10
2秒前
欧阳宇完成签到,获得积分10
2秒前
lijiajie完成签到,获得积分10
5秒前
迷人人雄发布了新的文献求助10
5秒前
6秒前
7秒前
10秒前
Jasmiiine发布了新的文献求助30
11秒前
命运线完成签到,获得积分10
12秒前
12秒前
w5566完成签到 ,获得积分10
13秒前
谨慎哈密瓜完成签到,获得积分10
14秒前
14秒前
清秀面包完成签到,获得积分10
15秒前
活力的bird发布了新的文献求助20
17秒前
哇咔咔完成签到 ,获得积分10
18秒前
小乔应助迷人人雄采纳,获得10
21秒前
小洲王先生完成签到,获得积分10
23秒前
25秒前
28秒前
zhuo完成签到 ,获得积分10
28秒前
31秒前
celine完成签到,获得积分10
32秒前
礼礼应助科研通管家采纳,获得10
33秒前
斯文败类应助科研通管家采纳,获得10
33秒前
礼礼应助科研通管家采纳,获得10
33秒前
Orange应助科研通管家采纳,获得30
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
35秒前
叶落孤城完成签到 ,获得积分10
37秒前
39秒前
41秒前
kejianhao8发布了新的文献求助10
43秒前
44秒前
44秒前
44秒前
李小萌发布了新的文献求助10
45秒前
jyhh发布了新的文献求助10
49秒前
aerou发布了新的文献求助30
50秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
Research on managing groups and teams 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3330276
求助须知:如何正确求助?哪些是违规求助? 2959850
关于积分的说明 8597432
捐赠科研通 2638376
什么是DOI,文献DOI怎么找? 1444279
科研通“疑难数据库(出版商)”最低求助积分说明 669096
邀请新用户注册赠送积分活动 656628