Deep convolutional recurrent neural network with transfer learning for hyperspectral image classification

高光谱成像 人工智能 计算机科学 深度学习 卷积神经网络 学习迁移 模式识别(心理学) 特征提取 上下文图像分类 人工神经网络 降维 图像(数学) 机器学习
作者
Bing Liu,Xuchu Yu,Anzhu Yu,Gang Wan
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:12 (02): 1-1 被引量:45
标识
DOI:10.1117/1.jrs.12.026028
摘要

The deep learning methods have recently been successfully explored for hyperspectral image classification. However, it may not perform well when training samples are scarce. A deep transfer learning method is proposed to improve the hyperspectral image classification performance in the situation of limited training samples. First, a Siamese network composed of two convolutional neural networks is designed for local image descriptors extraction. Subsequently, the pretrained Siamese network model is reused to transfer knowledge to the hyperspectral image classification tasks by feeding deep features extracted from each band into a recurrent neural network. Indeed, a deep convolutional recurrent neural network is constructed for hyperspectral image classification by this way. Finally, the entire network is tuned by a small number of labeled samples. The important characteristic of the designed model is that the deep convolutional recurrent neural network provides a way of utilizing the spatial–spectral features without dimension reduction. Furthermore, the transfer learning method provides an opportunity to train such deep model with limited labeled samples. Experiments on three widely used hyperspectral datasets demonstrate that the proposed transfer learning method can improve the classification performance and competitive classification results can be achieved when compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大宝完成签到 ,获得积分20
2秒前
量子星尘发布了新的文献求助10
3秒前
louis136116发布了新的文献求助10
4秒前
5秒前
5秒前
潮潮完成签到,获得积分10
6秒前
CipherSage应助箱箱采纳,获得10
6秒前
6秒前
linna完成签到,获得积分10
7秒前
lllllllll完成签到,获得积分10
8秒前
allrubbish发布了新的文献求助10
8秒前
9秒前
9秒前
虾皮酱完成签到,获得积分10
10秒前
GXfjnu完成签到,获得积分10
10秒前
11秒前
Mickey发布了新的文献求助10
11秒前
shinn发布了新的文献求助10
11秒前
科研开门应助ylq采纳,获得10
11秒前
12秒前
顾矜应助刘洪均采纳,获得10
12秒前
13秒前
RxX发布了新的文献求助10
14秒前
Orange应助louis136116采纳,获得10
14秒前
jiayu123发布了新的文献求助10
14秒前
16秒前
17秒前
zhoup完成签到,获得积分20
17秒前
vic发布了新的文献求助10
17秒前
Garnieta完成签到,获得积分10
18秒前
19秒前
19秒前
jiayu123完成签到,获得积分10
20秒前
桐桐应助老迟到的沛萍采纳,获得10
20秒前
20秒前
cbx发布了新的文献求助10
21秒前
iiiau发布了新的文献求助10
21秒前
Michi完成签到,获得积分20
23秒前
Aaron发布了新的文献求助10
24秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975339
求助须知:如何正确求助?哪些是违规求助? 3519670
关于积分的说明 11199199
捐赠科研通 3256002
什么是DOI,文献DOI怎么找? 1798043
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305