Deep convolutional recurrent neural network with transfer learning for hyperspectral image classification

高光谱成像 人工智能 计算机科学 深度学习 卷积神经网络 学习迁移 模式识别(心理学) 特征提取 上下文图像分类 人工神经网络 降维 图像(数学) 机器学习
作者
Bing Liu,Xuchu Yu,Anzhu Yu,Gang Wan
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:12 (02): 1-1 被引量:45
标识
DOI:10.1117/1.jrs.12.026028
摘要

The deep learning methods have recently been successfully explored for hyperspectral image classification. However, it may not perform well when training samples are scarce. A deep transfer learning method is proposed to improve the hyperspectral image classification performance in the situation of limited training samples. First, a Siamese network composed of two convolutional neural networks is designed for local image descriptors extraction. Subsequently, the pretrained Siamese network model is reused to transfer knowledge to the hyperspectral image classification tasks by feeding deep features extracted from each band into a recurrent neural network. Indeed, a deep convolutional recurrent neural network is constructed for hyperspectral image classification by this way. Finally, the entire network is tuned by a small number of labeled samples. The important characteristic of the designed model is that the deep convolutional recurrent neural network provides a way of utilizing the spatial–spectral features without dimension reduction. Furthermore, the transfer learning method provides an opportunity to train such deep model with limited labeled samples. Experiments on three widely used hyperspectral datasets demonstrate that the proposed transfer learning method can improve the classification performance and competitive classification results can be achieved when compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
地表飞猪应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
彭于晏应助chen采纳,获得10
刚刚
领导范儿应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
刚刚
科研通AI2S应助科研通管家采纳,获得10
刚刚
斯文败类应助科研通管家采纳,获得10
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
SYLH应助科研通管家采纳,获得20
1秒前
1秒前
赘婿应助科研通管家采纳,获得10
1秒前
Owen应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得30
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
1秒前
所所应助科研通管家采纳,获得10
1秒前
昏睡的蟠桃应助科研通管家采纳,获得200
1秒前
搜集达人应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
2秒前
Ava应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
3秒前
3秒前
如云发布了新的文献求助10
4秒前
angela给angela的求助进行了留言
4秒前
4秒前
XZZH完成签到,获得积分10
5秒前
5秒前
独特乘云发布了新的文献求助10
6秒前
WELXCNK发布了新的文献求助10
6秒前
setuin发布了新的文献求助10
7秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038657
求助须知:如何正确求助?哪些是违规求助? 3576306
关于积分的说明 11375198
捐赠科研通 3306108
什么是DOI,文献DOI怎么找? 1819379
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066