Deep convolutional recurrent neural network with transfer learning for hyperspectral image classification

高光谱成像 人工智能 计算机科学 深度学习 卷积神经网络 学习迁移 模式识别(心理学) 特征提取 上下文图像分类 人工神经网络 降维 图像(数学) 机器学习
作者
Bing Liu,Xuchu Yu,Anzhu Yu,Gang Wan
出处
期刊:Journal of Applied Remote Sensing [SPIE]
卷期号:12 (02): 1-1 被引量:45
标识
DOI:10.1117/1.jrs.12.026028
摘要

The deep learning methods have recently been successfully explored for hyperspectral image classification. However, it may not perform well when training samples are scarce. A deep transfer learning method is proposed to improve the hyperspectral image classification performance in the situation of limited training samples. First, a Siamese network composed of two convolutional neural networks is designed for local image descriptors extraction. Subsequently, the pretrained Siamese network model is reused to transfer knowledge to the hyperspectral image classification tasks by feeding deep features extracted from each band into a recurrent neural network. Indeed, a deep convolutional recurrent neural network is constructed for hyperspectral image classification by this way. Finally, the entire network is tuned by a small number of labeled samples. The important characteristic of the designed model is that the deep convolutional recurrent neural network provides a way of utilizing the spatial–spectral features without dimension reduction. Furthermore, the transfer learning method provides an opportunity to train such deep model with limited labeled samples. Experiments on three widely used hyperspectral datasets demonstrate that the proposed transfer learning method can improve the classification performance and competitive classification results can be achieved when compared with state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Dengera完成签到,获得积分10
刚刚
1秒前
1秒前
孔庙祭孔子完成签到,获得积分10
1秒前
1秒前
2秒前
RONG发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
芝麻发布了新的文献求助30
5秒前
映雪923发布了新的文献求助10
7秒前
Yuki完成签到,获得积分10
7秒前
su发布了新的文献求助30
8秒前
8秒前
可爱的函函应助猪猪hero采纳,获得10
9秒前
蕉太狼完成签到,获得积分10
9秒前
Holland应助LZQ采纳,获得30
9秒前
迟大猫给可爱邓邓的求助进行了留言
9秒前
jgpiao发布了新的文献求助10
10秒前
11秒前
云瑾应助风趣的惜天采纳,获得10
11秒前
XTQ完成签到,获得积分10
12秒前
13秒前
笑点低怀亦完成签到,获得积分10
13秒前
15秒前
15秒前
16秒前
wanci应助Jeff采纳,获得10
16秒前
lxy发布了新的文献求助10
16秒前
汉堡包应助笑点低怀亦采纳,获得10
18秒前
A001发布了新的文献求助10
19秒前
烟花应助jgpiao采纳,获得10
19秒前
te发布了新的文献求助10
20秒前
酷波er应助七七八八采纳,获得10
20秒前
20秒前
22秒前
22秒前
Oliver发布了新的文献求助10
22秒前
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 2000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
A mandible of Pliosaurus brachyspondylus (Reptilia, Sauropterygia) from the Kimmeridgian of the Boulonnais (France) 300
Avialinguistics:The Study of Language for Aviation Purposes 270
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3685654
求助须知:如何正确求助?哪些是违规求助? 3236393
关于积分的说明 9825309
捐赠科研通 2948172
什么是DOI,文献DOI怎么找? 1616692
邀请新用户注册赠送积分活动 763773
科研通“疑难数据库(出版商)”最低求助积分说明 738060