Deep learning outperformed 136 of 157 dermatologists in a head-to-head dermoscopic melanoma image classification task

卷积神经网络 人工智能 深度学习 医学 灵敏度(控制系统) 模式识别(心理学) 计算机科学 任务(项目管理) 皮肤病科 电子工程 工程类 经济 管理
作者
Titus J. Brinker,Achim Hekler,Alexander Enk,Joachim Klode,Axel Hauschild,Carola Berking,Bastian Schilling,Sebastian Haferkamp,Dirk Schadendorf,Tim Holland‐Letz,Jochen Utikal,Christof von Kalle,Wiebke Ludwig‐Peitsch,Judith Sirokay,Lucie Heinzerling,Magarete Albrecht,Katharina Baratella,Lena Bischof,Eleftheria Chorti,Anna Dith,Christina Drusio,Nina Giese,Emmanouil Gratsias,Klaus Griewank,Sandra Hallasch,Zdenka Hanhart,Saskia Herz,Katja Hohaus,Philipp Jansen,Finja Jockenhöfer,Theodora Kanaki,Sarah Knispel,Katja Leonhard,Anna Martaki,Liliana Matei,Johanna Matull,Alexandra Olischewski,Maximilian Petri,Jan‐Malte Placke,Simon Raub,Katrin Salva,Swantje Schlott,Elsa Sody,Nadine Steingrube,Ingo Stoffels,Selma Ugurel,Anne Zaremba,Christoffer Gebhardt,Nina Booken,Maria Christolouka,Kristina Buder‐Bakhaya,Therezia Bokor‐Billmann,Alexander Enk,Patrick Gholam,Holger Hänßle,Martin Salzmann,Sarah K. Schäfer,Knut Schäkel,Timo Schank,Ann‐Sophie Bohne,Sophia Deffaa,Katharina Drerup,Friederike Egberts,Anna‐Sophie Erkens,Benjamin Ewald,Sandra Falkvoll,Sascha Gerdes,Viola Harde,Axel Hauschild,Marion Jost,Katja Kosova,Laetitia Messinger,Malte Metzner,Kirsten Morrison,Rogina Motamedi,Anja Pinczker,Anne Rosenthal,Natalie Scheller,Thomas Schwarz,Dora Stölzl,Federieke Thielking,Elena Tomaschewski,Ulrike Wehkamp,Michael Weichenthal,Oliver Wiedow,Claudia Bär,Sophia Bender-Säbelkampf,Marc Horbrügger,Ante Karoglan,Luise Kraas,Jörg Faulhaber,Cyrill Géraud,Ze Guo,Philipp Koch,Miriam Linke,Nolwenn Maurier,Verena Müller,Benjamin Thomas,Jochen Utikal,Ali Saeed M. Alamri,Andrea Baczako,Carola Berking,Matthias Betke,Carolin Haas,Daniela Hartmann,Markus V. Heppt,Katharina Kilian,Sebastian Krammer,Natalie Lidia Lapczynski,Sebastian Mastnik,Suzan Nasifoglu,Cristel Ruini,Elke Sattler,Max Schlaak,Hans Wolff,Birgit Achatz,Astrid Bergbreiter,Konstantin Drexler,Monika Ettinger,Sebastian Haferkamp,Anna Halupczok,Marie Hegemann,Verena Dinauer,Maria Maagk,Marion Mickler,Biance Philipp,Anna Wilm,Constanze Wittmann,Anja Gesierich,Valerie Glutsch,Katrin Kahlert,Andreas Kerstan,Bastian Schilling,Philipp Schrüfer
出处
期刊:European Journal of Cancer [Elsevier]
卷期号:113: 47-54 被引量:409
标识
DOI:10.1016/j.ejca.2019.04.001
摘要

Recent studies have successfully demonstrated the use of deep-learning algorithms for dermatologist-level classification of suspicious lesions by the use of excessive proprietary image databases and limited numbers of dermatologists. For the first time, the performance of a deep-learning algorithm trained by open-source images exclusively is compared to a large number of dermatologists covering all levels within the clinical hierarchy.We used methods from enhanced deep learning to train a convolutional neural network (CNN) with 12,378 open-source dermoscopic images. We used 100 images to compare the performance of the CNN to that of the 157 dermatologists from 12 university hospitals in Germany. Outperformance of dermatologists by the deep neural network was measured in terms of sensitivity, specificity and receiver operating characteristics.The mean sensitivity and specificity achieved by the dermatologists with dermoscopic images was 74.1% (range 40.0%-100%) and 60% (range 21.3%-91.3%), respectively. At a mean sensitivity of 74.1%, the CNN exhibited a mean specificity of 86.5% (range 70.8%-91.3%). At a mean specificity of 60%, a mean sensitivity of 87.5% (range 80%-95%) was achieved by our algorithm. Among the dermatologists, the chief physicians showed the highest mean specificity of 69.2% at a mean sensitivity of 73.3%. With the same high specificity of 69.2%, the CNN had a mean sensitivity of 84.5%.A CNN trained by open-source images exclusively outperformed 136 of the 157 dermatologists and all the different levels of experience (from junior to chief physicians) in terms of average specificity and sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助阿吖采纳,获得10
2秒前
3秒前
Jenny完成签到,获得积分10
3秒前
粥喝不喝完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
scott完成签到,获得积分10
5秒前
5秒前
91完成签到,获得积分10
6秒前
7秒前
jin完成签到 ,获得积分10
8秒前
9秒前
Licyan发布了新的文献求助10
10秒前
10秒前
Akim应助蝶步韶华采纳,获得10
10秒前
10秒前
10秒前
11秒前
白方明发布了新的文献求助10
11秒前
huo发布了新的文献求助10
11秒前
乐观大雁发布了新的文献求助10
11秒前
12秒前
yyta发布了新的文献求助10
12秒前
机灵芷文完成签到,获得积分20
12秒前
阿达完成签到 ,获得积分10
13秒前
hh发布了新的文献求助30
13秒前
Jasper应助KH采纳,获得30
13秒前
有机发布了新的文献求助10
15秒前
15秒前
15秒前
宇宙超级无敌涛关注了科研通微信公众号
15秒前
17秒前
17秒前
阿吖完成签到,获得积分10
17秒前
figure完成签到,获得积分20
18秒前
19秒前
20秒前
ZWX完成签到 ,获得积分10
20秒前
doux发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483395
求助须知:如何正确求助?哪些是违规求助? 3072756
关于积分的说明 9127749
捐赠科研通 2764321
什么是DOI,文献DOI怎么找? 1517109
邀请新用户注册赠送积分活动 701937
科研通“疑难数据库(出版商)”最低求助积分说明 700797