Well-dispersed CoO embedded in 3D N-S-doped carbon framework through morphology-retaining pyrolysis as efficient oxygen reduction and evolution electrocatalyst

电催化剂 过电位 催化作用 碳纤维 析氧 热解 双功能 化学工程 材料科学 化学 无机化学 电化学 电极 有机化学 复合数 复合材料 物理化学 工程类
作者
Min Zhu,Juan Nong,Pu Xie,Ao Sheng Zhu,Min Zhi Rong,Ming Qiu Zhang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:295: 624-631 被引量:21
标识
DOI:10.1016/j.electacta.2018.10.200
摘要

Carbon-based materials are crucial conductive additive and non-metal electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). However, the high potential needed for driving OER usually leads to electrochemical oxidation of carbon-based materials, reducing their catalysis durability. Meanwhile, the weak interaction between carbon-based conductive additive and transition metal oxides, nitrides, sulfides and other compounds that possess electrocatalyst activity affects the performance of the electrocatalysts. Herein, a novel three-dimensional (3D) bifunctional electrocatalyst was prepared by embedding CoO nanoparticles into nitrogen and sulfur co-doped carbon framework (denoted as Co/N/S-CF) through morphology-controlled solid-state pyrolysis. The carbon framework was derived from a morphology-retaining pyrolysis of poly(aniline-co-2-aminothiophenol) precursor, retaining the 3D porous structure of the latter. The embedded CoO nanoparticles improve electrocatalysis durability of the 3D carbon-based framework as CoO has lower OER potential than the electrooxidation decomposition potential of doped carbon materials. Only 1.61 V can attain a current density of 10 mA cm−2. Meanwhile, the catalyst retains the highly efficient activity of N and S co-doped carbon framework towards ORR with an onset potential of about 0.92 V, suggesting that it is a qualified electrocatalyst for ORR. Long-term stability of the catalyst for ORR and OER is superior to the commercially available Pt/C and IrO2. Furthermore, the overpotential between ORR and OER (oxygen electrode activity parameter) of the catalyst is calculated to be 0.796 V, indicating that the catalyst could be a promising bifunctional electrocatalyst for both ORR and OER.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Peckhin完成签到 ,获得积分10
1秒前
酷炫小懒虫完成签到,获得积分10
1秒前
1秒前
俏皮行云完成签到,获得积分10
1秒前
1秒前
桐桐应助味道采纳,获得10
4秒前
科研通AI2S应助味道采纳,获得10
4秒前
GGBOND完成签到 ,获得积分10
4秒前
qizhixu发布了新的文献求助10
4秒前
害羞的语芙完成签到 ,获得积分20
6秒前
6秒前
lili发布了新的文献求助10
6秒前
耶耶发布了新的文献求助20
7秒前
一口橙子完成签到 ,获得积分10
7秒前
爆米花应助勤劳的雨文采纳,获得10
7秒前
7秒前
qw完成签到 ,获得积分20
8秒前
8秒前
9秒前
9秒前
深情安青应助傅宛白采纳,获得10
9秒前
哈哈完成签到,获得积分10
9秒前
xyj发布了新的文献求助30
10秒前
11秒前
未来发布了新的文献求助10
12秒前
科研通AI5应助王大锤采纳,获得10
12秒前
Buduan完成签到,获得积分10
13秒前
Neko发布了新的文献求助10
13秒前
不吃鱼发布了新的文献求助10
13秒前
13秒前
我是老大应助苏世采纳,获得10
14秒前
14秒前
俭朴水风发布了新的文献求助10
14秒前
14秒前
juky发布了新的文献求助30
15秒前
xiaoxiang_1001完成签到,获得积分10
15秒前
清晾油发布了新的文献求助10
15秒前
酷炫中蓝完成签到,获得积分10
16秒前
17秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558928
求助须知:如何正确求助?哪些是违规求助? 3133623
关于积分的说明 9403366
捐赠科研通 2833721
什么是DOI,文献DOI怎么找? 1557654
邀请新用户注册赠送积分活动 727595
科研通“疑难数据库(出版商)”最低求助积分说明 716366