已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification

回顾性分析 计算机科学 人工智能 集合(抽象数据类型) 机器学习 药物发现 化学 全合成 生物化学 有机化学 程序设计语言
作者
Javier L. Baylon,Nicholas A. Cilfone,Jeffrey R. Gulcher,Thomas Chittenden
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (2): 673-688 被引量:68
标识
DOI:10.1021/acs.jcim.8b00801
摘要

Chemical synthesis planning is a key aspect in many fields of chemistry, especially drug discovery. Recent implementations of machine learning and artificial intelligence techniques for retrosynthetic analysis have shown great potential to improve computational methods for synthesis planning. Herein, we present a multiscale, data-driven approach for retrosynthetic analysis with deep highway networks (DHN). We automatically extracted reaction rules (i.e., ways in which a molecule is produced) from a data set consisting of chemical reactions derived from U.S. patents. We performed the retrosynthetic reaction prediction task in two steps: first, we built a DHN model to predict which group of reactions (consisting of chemically similar reaction rules) was employed to produce a molecule. Once a reaction group was identified, a DHN trained on the subset of reactions within the identified reaction group, was employed to predict the transformation rule used to produce a molecule. To validate our approach, we predicted the first retrosynthetic reaction step for 40 approved drugs using our multiscale model and compared its predictive performance with a conventional model trained on all machine-extracted reaction rules employed as a control. Our multiscale approach showed a success rate of 82.9% at generating valid reactants from retrosynthetic reaction predictions. Comparatively, the control model trained on all machine-extracted reaction rules yielded a success rate of 58.5% on the validation set of 40 pharmaceutical molecules, indicating a significant statistical improvement with our approach to match known first synthetic reaction of the tested drugs in this study. While our multiscale approach was unable to outperform state-of-the-art rule-based systems curated by expert chemists, multiscale classification represents a marked enhancement in retrosynthetic analysis and can be easily adapted for use in a range of artificial intelligence strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助酷盖采纳,获得10
1秒前
lzuzhang发布了新的文献求助10
1秒前
科研通AI2S应助zoe采纳,获得10
5秒前
14秒前
个性白山完成签到,获得积分10
15秒前
Jasper应助罗诗薇采纳,获得10
17秒前
甜蜜小之发布了新的文献求助10
17秒前
田様应助One_more_Please0采纳,获得10
21秒前
hyde发布了新的文献求助10
21秒前
22秒前
Singularity应助wzy123采纳,获得20
23秒前
甜蜜小之完成签到,获得积分10
27秒前
碧蓝紫山发布了新的文献求助10
28秒前
One_more_Please0完成签到,获得积分10
35秒前
星辰大海应助医学牲采纳,获得10
36秒前
ABC发布了新的文献求助10
37秒前
逻辑猫应助青黛采纳,获得10
40秒前
43秒前
wen完成签到 ,获得积分10
45秒前
丨墨月丨完成签到,获得积分10
45秒前
orixero应助886404采纳,获得10
47秒前
从容成危完成签到 ,获得积分10
48秒前
拓跋凌波发布了新的文献求助10
49秒前
50秒前
碧蓝紫山完成签到,获得积分20
51秒前
善学以致用应助守默采纳,获得10
51秒前
53秒前
yqm发布了新的文献求助10
53秒前
xmfffff发布了新的文献求助10
53秒前
gaoyang123完成签到 ,获得积分10
55秒前
58秒前
医学牲发布了新的文献求助10
59秒前
59秒前
1分钟前
上岸完成签到 ,获得积分20
1分钟前
yqm完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
1分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133675
求助须知:如何正确求助?哪些是违规求助? 2784676
关于积分的说明 7768124
捐赠科研通 2439923
什么是DOI,文献DOI怎么找? 1297102
科研通“疑难数据库(出版商)”最低求助积分说明 624868
版权声明 600791