亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Enhancing Retrosynthetic Reaction Prediction with Deep Learning Using Multiscale Reaction Classification

回顾性分析 计算机科学 人工智能 集合(抽象数据类型) 机器学习 药物发现 化学 全合成 生物化学 有机化学 程序设计语言
作者
Javier L. Baylon,Nicholas A. Cilfone,Jeffrey R. Gulcher,Thomas Chittenden
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:59 (2): 673-688 被引量:68
标识
DOI:10.1021/acs.jcim.8b00801
摘要

Chemical synthesis planning is a key aspect in many fields of chemistry, especially drug discovery. Recent implementations of machine learning and artificial intelligence techniques for retrosynthetic analysis have shown great potential to improve computational methods for synthesis planning. Herein, we present a multiscale, data-driven approach for retrosynthetic analysis with deep highway networks (DHN). We automatically extracted reaction rules (i.e., ways in which a molecule is produced) from a data set consisting of chemical reactions derived from U.S. patents. We performed the retrosynthetic reaction prediction task in two steps: first, we built a DHN model to predict which group of reactions (consisting of chemically similar reaction rules) was employed to produce a molecule. Once a reaction group was identified, a DHN trained on the subset of reactions within the identified reaction group, was employed to predict the transformation rule used to produce a molecule. To validate our approach, we predicted the first retrosynthetic reaction step for 40 approved drugs using our multiscale model and compared its predictive performance with a conventional model trained on all machine-extracted reaction rules employed as a control. Our multiscale approach showed a success rate of 82.9% at generating valid reactants from retrosynthetic reaction predictions. Comparatively, the control model trained on all machine-extracted reaction rules yielded a success rate of 58.5% on the validation set of 40 pharmaceutical molecules, indicating a significant statistical improvement with our approach to match known first synthetic reaction of the tested drugs in this study. While our multiscale approach was unable to outperform state-of-the-art rule-based systems curated by expert chemists, multiscale classification represents a marked enhancement in retrosynthetic analysis and can be easily adapted for use in a range of artificial intelligence strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
ceeray23发布了新的文献求助20
9秒前
10秒前
16秒前
天才玩家H完成签到,获得积分10
17秒前
25秒前
XP完成签到 ,获得积分10
27秒前
32秒前
龙06驳回了泷生应助
38秒前
林一发布了新的文献求助20
39秒前
科研通AI2S应助Ww采纳,获得10
42秒前
背后晓兰完成签到 ,获得积分10
44秒前
45秒前
49秒前
49秒前
56秒前
1分钟前
1分钟前
赘婿应助PPD采纳,获得10
1分钟前
清浅发布了新的文献求助30
1分钟前
1分钟前
PPD发布了新的文献求助10
1分钟前
颢懿完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
mm发布了新的文献求助10
1分钟前
1分钟前
31325发布了新的文献求助10
1分钟前
科研通AI2S应助XIII采纳,获得10
1分钟前
dh完成签到,获得积分0
1分钟前
1分钟前
1分钟前
Criminology34应助清浅采纳,获得10
1分钟前
天天快乐应助清浅采纳,获得10
1分钟前
苗苗完成签到 ,获得积分10
1分钟前
二丙发布了新的文献求助10
1分钟前
1分钟前
NEUROVASCULAR发布了新的文献求助10
1分钟前
XIII发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664111
求助须知:如何正确求助?哪些是违规求助? 4857755
关于积分的说明 15107180
捐赠科研通 4822567
什么是DOI,文献DOI怎么找? 2581565
邀请新用户注册赠送积分活动 1535750
关于科研通互助平台的介绍 1493984